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EXECUTIVE SUMMARY

This topical report presents the results of the physical flow modeling conducted as part of a
U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project
demonstrating advanced tangentially-fired combustion techniques for the reduction of
nitrogen oxide (NOx) emissions from a coal-fired boiler. The purpose of this
demonstration project is to study the NOx emissions characteristics of ABB Combustion
Engineering's (ABB CE) Low NOx Concentric Firing System (LNCFS) Levels I, II, and
II. These technologies are being installed and tested in stepwise fashion at Gulf Power
Company's Plant Lansing Smith Unit 2.

The objective of the physical flow model study was to model the boiler and overfire air
ductwork at Plant Smith Unit 2 prior to the installation of the retrofit equipment. These
tests were conducted to determine the optimal operating conditions for the unit and to
troubleshoot design defects on-a small scale prior to the full-scale installation at Plant
Smith. To accomplish the modeling in a timely manner, the physical flow modeling study
was subdivided into the following tasks:

TASK I Design and construction of the boiler and ductwork models
TASKII Test the model of the overfire air ductwork

TASKIII Test the baseline configuration

TASK IV Test the LNCFS Level II configuration

TASK V Test the LNCFS Level I configuration.

At the completion of each task (except Task I), an interim report was issued in order to
provide the most up to date information about the project. This report is a compilation of
the interim reports from each of these tasks. Details concerning Task I are included in the
reports from Tasks II and III. The purpose of each task was to investigate the flow
characteristics of the Plant Smith boiler and overfire air ductwork using the physical flow
model.

Task I involved the design and construction of the 1/12 scale boiler model and the 1/6 scale
model of the overfire air ductwork. Following the completion of Task I, the overfire air
ductwork (Task II) was tested. Results of these tests showed that the use of turning vanes
with trailing edges in the turns of the ductwork could significantly reduce the pressure drop



across the overfire air ductwork. These design recommendations were implemented in the
final ductwork design.

Tasks III, IV, and V involved the testing of the baseline, LNCFS Level II, and LNCFS
Level III configuration of the boiler. The baseline tests were conducted to determine to
original operating conditions of the unit. The results from these tests were compared to the
test configurations chosen for LNCFS Levels II and ITI. Finally, recommended operating
conditions for LNCFS Level II and III were presented.
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DISCLAIMER

This report was prepared as an account of work sponsored by Southern
Company Services. Neither Southern Company Services, ABB
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any information, apparatus, method, or process disclosed in this report or
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1.0 Introduction

Southern Company Services (SCS), the Department of Energy (DOE), and
ABB Combustion Engineering (CE) are involved in a program to develop
advanced tangentially fired combustion methods for reducing NOx
emissions. The intent of this program is to demonstrate, at “full scale,” low
NOx technologies of a commercial prototype design. This demonstration
includes the addition of Low NOx Concentric Firing Systems (LNCFS) to
Gulf Power Company’s Lansing Smith Unit. To investigate the fluid
mechanic performance of the proposed low NOx configurations, CE is
performing a physical isothermal flow model study at its Kreisinger
Development Laboratory (KDL) in Windsor, CT.

The LNCFS modifications to the Lansing Smith Unit include the addition of
separated over fire air (SOFA.) The duct work for this over fire air is
designed to permit reasonable flow measurement through the use of a
multi-cell venturi. This type of venturi requires a uniform inlet distribution
for successful operation.

In order to insure an acceptable velocity profile at the multi-cell venturi
inlet, and to minimize the pressure drop within the duct work, KDL was
requested to perform a model study of the system. A secondary objective
was to provide a uniform flow at each OFA nozzle. This was accomplished
by constructing a one-sixth scale model of the OFA duct and testing a series
of flow control. These devices were designed to even out the flow profiles in
the duct and to reduce the pressure drop over the entire system.

This report presents the results of the SOFA duct work modeling conducted
under Task II of the SCS Low NOx Development program. This report
documents the model study and provides results, conclusions, and
recommendations.

ABB Combustion Engineering February 1991
Kreisinger Development Laboratory



SCS Low NOx Development Program Taskli Report

2.0 Conclusions

The following conclusions can be drawn from the velocity and pressure
testing of the SOFA duct work which was performed at KDL: -

1.) The velocity profile at the inlet to the multi-cell venturi, with no
upstream flow control devices, had an RMS deviation of 8.5%. With the
addition of a turning vane with a trailing edge at the upstream elbow,
the RMS deviation for this plane was reduced to 4.0%.

2.) An even flow distribution in the upstream duct work reduces the
pressure drop across the “T” section, that part of the duct where the flow
is split to the OFA windboxes.

3.) The pressure drop coefficient for the baseline duct configuration (no flow
controls) is 5.3. When the recommended turning vanes are added to the
duct work, the pressure drop coefficient is reduced to 3.4, a 35%
reduction from the baseline configuration.

4.) For the baseline duct configuration, approximately one-half of the total
flow went to each of the OFA nozzles. The addition of the turning vanes
to the duct had little effect on this flow split.

3.0 Recommendations

In order to provide an even flow distribution at the multi-cell venturi inlet
plane and to reduce the overall pressure drop in the duct work, the turning
vanes, detailed in Appendix A, should be installed for both sets of OFA duct
work.

ABB Combustion Englneering February 1991
Kreisinger Deveiopment Labaratory
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4.0 Facility Description

A one-sixth scale, geometrically similar, isothermal flow model of the OFA
duct work was built and tested for this phase of the program. The duct
work was modeled from the OFA windboxes back to the secondary air duct.
Because the velocity profile at the inlet to the OFA duct work was not
known, a uniform inlet profile was used in the flow model. However, due to
the long length of the duct, this assumption is not expected to effect the
results.

The model was constructed primarily of 1/2” plexi-glas, for ease in
construction and modifications. All dimensions were maintained to a
tolerance of £1/16"in the flow model, which corresponds to £3/8” full scale.
Sheet metal was used for the turning vanes. A lamson blower was used to
operate the duct model under forced draft. The model, set up in an inverted
position for improved stability, is shown in Figure 1.

Quantitative measurements of pressure and velocity distributions were
made with a hand held pitot tube and a data acquisition system developed at
KDL. Instrumentation consisted of two (2) 0-10” barocels and two (2)
Barocel Electric Manometers. The pitot tube was connected to the barocels
such that the total and velocity pressures could be measured. The data
obtained by this system was recorded via a personal computer. A

schematic of this set up is shown in Figure 2.

ABB Combustion Englneering February 1891
Kreiginger Development Laboratory



Figure 1
Over Fire Air Duct Model
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5.0 Modeling and Testing Techniques
5.1 Modeling Theory

Industrial gas flow systems normally operate in the fully turbulent flow
regime at MCR conditions. At the same flow velocities, geometrically
scaled models of these systems will also operate in the turbulent regime,
although at lower Reynolds Numbers. This is due to the characteristic size
reduction and the density and viscosity variations of the gas.

Past experience at KDL and other research laboratories has shown that
even though the corresponding Reynolds Numbers in the model and
prototype are not identical, the model will produce gas flow profiles which
are similar to those found in the prototype. Quantitatively, a scaled model
will produce similar flow profiles provided a Reynolds Number greater
than 10,000 is maintained during its operation. This allows the prediction
of actual velocity profiles in a system based on physical model tests.

Velocities for each plane in the model are non-dimensionalized
(normalized) by dividing the velocity at each point in the model by the
average velocity in that plane. When the flow is turbulent, the normalized
velocities in a plane will remain the same, regardless of the actual flow rate
in the model or the prototype.

Since flow separation, eddy formation, and stall (flow patterns) are
responsible for creating most of the pressure drop in a duct system, it is
possible to obtain quantitative pressure drop measurements in the flow
model. Quantitatively, the pressure drop, AP, can be expressed as a
function of the average velocity pressure using Euler’s Number (X.)

AP = ‘JC"(P*Vz)/ 2g.

where:
AP = total pressure drop
(p*V?) / 2g, = average velocity pressure
X = pressure drop coefficient
ABB Combxustion Engineering February 1991
Kreisinger Development Laboratory
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When the model is properly built and operated, the pressure drop coefficient
of the model is the same as that of the prototype. However, since the
Reynolds Number in the model is less than that of the prototype, the
boundary layer of the fluid in the model will be proportionally larger than
the prototype. Thus, the pressure drop due to friction in the model will be
higher than in the prototype, and the total pressure drop predictions for the
prototype should be conservative.

5.2 Testing Procedures

The primary objectives of this study was to obtain a uniform velocity profile
at the multi-cell venturi inlet and to reduce the total pressure drop of the
duct system. In order to accomplish this, one-dimensional velocity
traverses were performed at various planes in the duct work to determine
the duct’s flow profiles and pressure drop. The results from these tests
were then used to design new flow controls and the model retested. The
location of these test planes are shown in Figure 3.

At the start of each test, the facility operator input the appropriate test
parameters. These included the test number, test plane, number of rows,
and number of columns. Once the inputs were entered, testing was done
through manual manipulation of the Pitot tube. The model was probed in a
plane normal to the nominal flow direction. A typical test plane is shown
in Figure 4. Measurements of the total and velocity pressures for each
point in the test plane were stored in the PC for later reduction.

Once the testing was completed, the data was reduced through the use of an
in house data reduction program and presented in tabular form. This
output included the total and velocity pressures, calculated velocity for each
point, velocity profiles for the plane in a row/column format and the RMS
standard deviation of the distribution.

ABB Combustien Enginearirg February 1961
Krelsinger Development Laboratory
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6.0 Results

Testing of the OFA duct work model consisted of obtaining one dimensional
velocity and total pressure measurements to determine the flow distribution
and pressure drop characteristics. A total of four (4) configurations were
tested, with up to eleven (11) planes of data being evaluated for each
configuration.

The baseline duct configuration, no flow controls, was the first to be tested.
Velocity and total pressure measurements were taken at each of the eleven
(11) planes so that the overall pressure drop characteristics of the system
could be determined. In addition to this, the velocity profiles at the inlet to
the multi-cell venturi and at the outlet of the OFA nozzles were also
determined.

Nezxt, in order to reduce the pressure losses in the 90° elbows and to help
straighten the flow at the venturi inlet, standard 1/3 turning vanes were
installed at each of these elbows. Velocity and pressure measurements
were than taken at certain planes in the model.

Next, turning vanes with trailing edges were added to each branch of the
“T” section to help reduce the pressure losses further. Again, velocity and
pressure measurements were taken at selected planes.

Finally, trailing edges were added to the turning vanes of the second
configuration so that the flow could be further straightened and the
pressure losses reduced. Again, velocity and pressure measurements were
taken.

To simplify this report, details for only the final configuration have been
included. These can be found in Appendix A.

One objective of this testing was to evaluate the flow profile at the inlet to the
multi-cell venturi, and to establish a uniform flow at this location. Results

from the tests performed at the inlet plane to the multi-cell venturi indicate
that the addition of standard turning vanes to the upstream elbow has no

ABE Combustion Engineering February 1931
Kreisinger Davetopment Laboratory
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effect on the velocity profile, although it does reduce the pressure losses due
to the elbow. However, when trailing edges are added to the turning vanes,
the RMS deviation of the velocity data is greatly improved. These
improvements occur for both the side to side and the top to bottom
distribution within the plane and are given in Table 1.

Baseline 8.5% 8.2% 2.6%
1/3 turning vane 8.9% 8.2% 4.1%
Vanes w/ trailing edge 4.0% 3.6% 2.1%

Another objective was to minimize the pressure drop in the duct work. To
do this, pressure drops were analyzed and coefficients determined for each
of the four (4) duct configurations. Results from these tests showed that the
addition of turning vanes helped to reduce the pressure drop through the
duct work. These results also show that the addition of trailing edges to
these vanes helped to further reduce the pressure drop. Pressure drop
coefficients for each configuration tested are presented in Table 2.

Baseline 53 e

1/3 turning vane 4.3 18.1%

Vaned “T” section 4.0 24.2%

All vanes w/ trailing edge 34 35.0%
ABB Combustion Engineering February 1991
Krelsinger Development Laboratory vy

11



SCS Low NOx Development Progrem Task (I Repott

Additionally, velocity measurements were taken at the outlets of the OFA
nozzles to evaluate the corner to corner flow distributions in the duct work.
This was done for the baseline configuration, along with the addition of
turning vanes in the upstream elbows and the addition of turning vanes in
the “I” section of the duct . For each of these configurations, there was
insignificant corner to corner biasing of the flow. The results of these tests
are shown in Table 3.

nfi ion Corner #1 Corner #2
Baseline 50.7% 49.3%
Vaned “T” section 50.4% 49.6%
All vanes w/ trailing edge 51.0% 49.0%
ABB Combustio inearing Fabruary 1991
Kraisinger Dwdr::gn!ﬁnt Laboratory o
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70 Future Test Plans

The next phase of work for the flow model program will be LNCFS-II
testing. Changes to the physical flow model for this configuration include
modifications to the windboxes and the addition of low set Over Fire Air

(OFA.) These will simulate modifications to be made at the Lansing Smith
No. 2 Unit.

Evaluation of this configuration will be performed through the use of flow
visualization, gas mixing, and three dimensional velocity mapping. The
flow visualization tests will be performed in order to screen twenty (20)
potential field operating conditions. These conditions will evaluate a
combination of furnace load, OFA velocities, and OFA horizontal firing
angles. As each of these conditions is run, the effect of OFA tilt will also be
evaluated. At the conclusions of these tests, the five (5) “best”
configurations will be qualitatively tested via gas mixing and velocity profile
tests. The gas mixing tests will be performed by injecting a tracer gas
(methane) into the OFA flow. Samples of gas will than be extracted from
the furnace model at four (4) elevations above the injection point and a level
of mixing at these planes determined. Additionally, velocity data will be
taken at the furnace outlet plane so that the exit velocity profile may be
evaluated as a function of firing conditions.

ABB Combustion Engineering February 1991
Kreisinger Development Laboratory
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Appendix A
Recommended OFA Duct Flow Controls
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that such use may not infringe privately owned rights: or

B. Assumes any liability with respect to the use of, or damages resulting
from the use of any apparatus, method, or process disclosed in this report.
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1.0 Introduction

Southern Company Services (SCS), the Department of Energy (DOE), and
ABB Combustion Engineering (CE) are involved in a program to develop
advanced tangentially fired combustion modifications for reducing NOx
emissions. The intent of this program is to demonstrate, at “full scale,” low
NOx technologies of a commercial prototype design. This demonstration
includes the addition of Low NOx Concentric Firing Systems (LNCFS) to
Gulf Power Company’s Lansing Smith Unit. To investigate the fluid
mechanic performance of the proposed low NOx configurations, CE is
performing a physical isothermal flow model study at its Kreisinger
Development Laboratory (KDL) in Windsor, CT.

The objective of the isothermal flow model study is to assure optimum
performance of the Low NOx tangential firing system. The proposed effort
centers on the understanding of in-furnace flow and mixing phenomena
for the various low NOx firing systems as applied to the demonstration unit.
This is to be done through an evaluation of each proposed firing system,
along with the evaluation of the burner only configuration, in the
isothermal flow model Following the burner only test, the LNCFS-II
configuration will be modeled. This firing system will include the addition
of low set OFA to the furnace model. The final configuration to be evaluated
will be LNCFS-III. This configuration will consist of close-coupled overfire
air (CCOFA) operating in conjunction with low set OFA. Each LNCFS
configuration will be evaluated from an Over Fire Air (OFA) penetration,
mixing, and dispersion standpoint.

In addition to the furnace flow model, a model of the OFA ductwork from
the OFA windbozxes to the secondary air duct is being evaluated. The
proposed effort is to develop flow control devices which minimize pressure
drop and provide uniform flow profiles entering the flow measurement
devices.
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probe are then recorded along with probe position, angle, test number, test
plane, etc. by the central data acquisition computer.

2.3 Three Dimensional Pitot Tube Probe

A commercially available five-hole, directional sensing, pitot tube, shown
in Figure 5, was used. The probe has five pressure sensing holes located at
its tip. The centrally located pressure hole, P1, measures the total or
impact pressure of the fluid, while two lateral holes, P2 and P3, measure
the static pressure. If the probe is rotated around its long axis until P2=P3,
the plane of flow can be identified and measured. However, since the
condition P2=P3 can be given at two locations 180° apart, the correct vector
plane is identified when P2=P3 and P1 has its highest positive value with
respect to P2 and P3. An angular encoder is attached to the probe at its base
so that the angle of this vector plane, commonly called the yaw angle, can
be measured. The yaw angle indicates the plane of flow but does not give
the flow angle within this plane. This flow angle, known as the pitch
angle, is determined by the differential pressure P4-P5.

In actual practice, four (4) differential pressure readings are required to
fully define the flow at a particular point in the flow field of interest. These
pressure differentials are:

P1-Patm = Indicated total pressure with respect to atmosphere

P1-P2 = Indicated velocity pressure
P2-P3 = Yaw angle pressure
P4-P5 = Pitch angle pressure

Calibration curves are used to relate these pressure differentials to the -
actual pressures and pitch angles. These curves are generated through
detailed probe calibrations at the beginning and end of each test series.
These curves enable the determination of the actual velocity head and pitch
angle at each measuring point. Knowing this data and the yaw angle, the
X, ¥, Z, or the normal, radial, and tangential velocity vectors are determined
using simple geometric relationships.
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2.4 Smoke Generator

A commercially available smoke generator was utilized during the flow
visualization tests. The smoke generation system consisted of a gas heater,
a light oil smoke fluid reservoir, and tube coil. The fluid was pumped
through the tube coil, which was heated, causing it to flash into a dense
white stream of smoke. This stream was then injected into the various
ports of interest within the model.



3.0 Results
3.1 Flow Visualization

Flow visualization tests were performed on the baseline configuration as a
qualitative method of evaluating the flow fields, such as the flow swirl and
mixing characteristics. The smoke was injected into the windboxes to
qualitatively evaluate the flow swirl and gas mixing characteristics.
Testing was performed at reduced model flow rates, while maintaining
proper scaling parameters and flow splits. These reduced flow rates
improved the visibility of the smoke tracer within the model. A video
camera was used to record the flow patterns and a copy of this tape is

included as an Appendix. Sketches are included in this report as a visual
aid.

Smoke was introduced through each of the four (4) windboxes for this
configuration. The furnace swirl was viewed through each windboz,
showing the fireball characteristics. The patterns of the smoke as it
entered the furnace through different windbox elevations was also
observed. The flow entering through the lower part of the windbox
experienced recirculation into the hopper, as shown in Figure 6. As the
elevation in the windbox increased, the flow was more likely to become
entrained in the firing zone, Figure 7. Furthermore, it could be seen that
the flow entering the furnace was redirected along all four walls, instead of
penetrating towards the furnace center.
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3.2 Velocity Testing

Three dimensional velocity test data was obtained at the furnace outlet-
plane to characterize the gas flow distribution leaving the furnace. Velocity
data was taken using a five hole pitot probe and the APTD at the furnace
outlet plane, shown in Figure 8.

Pressure measurements were collected and stored in the data acquisition
system and central computer, coupled to the APTD. This data was reduced
to engineering units and is presented in Table 1. The computer calculates
the x, ¥, and z components of the flow, where the x direction is positive as
the flow moves along the rear to the front of the furnace, the y direction is
positive as the flow moves from left to right in the furnace, and the z
direction is positive when the flow is upward in the furnace. From the
three dimensional velocity data, the normalized upward velocity data was
plotted as surface and contour plots, and is shown in Figure 9. Results
show that the upward flow leaving the furnace is concentrated along the
left rear corner, typical of tangentially fired units. Furthermore, the
higher flows occur along the walls of the model with reduced upward flow
through the center.

Additionally, the tangential velocities are presented in the form of a vector
plot. This plot, along with the actual normalized normal velocities are
presented in Figure 10. The vector plot demonstrates a counter clockwise
swirl, illustrated by the flow visualization, which was imposed by the
tangential firing system. The center of this swirl is located in the center of
the plane, with higher tangential velocities at the rear, left corner.
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AUTOMATIC FROBE TRAVERGING DEVICE

PRUBE NUMBER

i BlBB4-2

PROBE CAL DATE : 10/23/90

TEST ID @ DASE PL& VEL FLANE NUMBER ;
TEST NUMBER : 1004 WIMDER OF ROWS : 5
TEST BATE ¢ 10/30/90 NUMBER OF COLUNNS : 11
AVERAGE NORMAL VELOCITY =  25.48 FT/SEC
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{ 2 3 4 5 § 7 8 y 10 1
{ -1.80 577 9.8 -5.40 347 -102 L2 402 AT 4.5 9.5
7 -3.78 -1S.34 -12.21  -B.BL -692 23 1L, .38 153 1959 287
T <1861 -19.39 -13.49  9.40 k44 -0.53 1377 1331 18.09 2.0 24.55
§ -2 -9.0F -5.47 5.8 -h52 L2 1671 18.67 7.0k 16,26 . 19.54
§  -14.463  -7.62  -6.10 2.4 L4k 9.0 13.94 4.1 1931 8.8  12.54
% Y-VELOCITY (FT/SEC) ¢
1 2 3 4 5 8 7 8 9 10 1
i -0.90 .92 2002 875 3025 2394 M8 M2 2598 1290 3.93
2 LB 5.0 L9380 1.9 135 442 8.85 2.63  -0.06 273
3 09 352 085 -10.46 16,60 1.7 -15.96 -17.10 -12.14 1074 -3.40
boo-10.55 ~10.18 20,52 -18.93 2113 -17.48 -2L39 <2658 2035 -10.74  -B.44
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{3335 W4k WIS 34T 248 .04 W26 Bl 3646 28.10
1 2914 25.84 5.6 2LBE 1977 2045 24U 20.20 2179 2686 3007
1255 2070 2027 24.88  18.63 541 19,9 19.46 244 2348 3177
i 280 1858 X577 20,50 2062 2096 1023 2048 20.87 6.4 10,65
§ 207 2491 12.47 2448 20.66 30,34 WL .92 45 39S 40.77
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{ 2 3 4 5 8 7 8 g b i
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Table 1 - Three Dimensional Velocity Results
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PROBE NUMBER  : B1384-2
PRODE CAL DATE  10/23/90

TEST ID ! BASE PL4 VEL PLANE NUMBER @ §
TEST NUMBER ¢ 1004 NUMBER OF ROMS : 3
TEST DATE ¢ 10/30/90 NUMBER OF COLUMMS @ 11
AVERAGE NORMAL VELUCITY = 25.48 FT/SEC
NORMAL VELOCITY RMS = 18.30 % .
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Table 1 - Three Dimensional Velocity Results (con't)



TEST ID

¢ BASE PL4 VEL
TEST KUMBER : 1004
TEST DATE  * 10/30/%¢0

AVERAGE NORMAL VELOCITY =

AUTOMATIC PROBE TRAVERGING DEVICE

% RESULTANT VELOCITY VECTOR/ANGLE IN THE X-Y PLANE ¥

PROBE HUMBER

PRODE CAL DATE : 10/23/%0

1 B1884-2

PLANE NUMBER ¢
NUMDER OF ROWS @

NUMBER OF COLUMNS :
25,48 FT1/SEC

§
b
A

i P 3 L 3 b 7
1 1.56/7237, 11.17/328, 24, 14/334. 29.31/349. 30, 45/333, 23.96/358. 20.80/ 6.
2 13.90/278. 16.20/289, 13.17/292, 9.60/294, 18.59/343. 12,38/ 11, 12.11/113.
k) 18, 7372683, 19.70/280. 16.84/305, 14.07/7222. 17.18/193, 1.34/340, 21,04/139,
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8 ? 10 1
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Table 1 - Three Dimensional Velocity Resulits (con't)
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4.0 Future Test Plans

The next phase of work for the flow model program will be LNCFS-II -
testing. Changes to the physical flow model for this configuration include
modifications to the windboxes and the addition of low set Over Fire Air
(OFA.) These will simulate modifications to be made at the Lansing Smith
No. 2 Unit.

Evaluation of this configuration will be performed through the use of flow
visualization, gas mixing, and three dimensional velocity mapping. The
flow visualization tests will be performed in order to screen twenty (20)
potential field operating conditions, These conditions will evaluate a
combination of furnace load, OFA velocities, and OFA horizontal firing
angles. As each of these conditions is run, the effect of OFA tilt will also be
evaluated. At the conclusions of these tests, the five (5) “best”
configurations will be qualitatively tested via gas mixing and velocity profile
tests. The gas mixing tests will be performed by injecting a tracer gas
(methane) into the OFA flow. Samples of gas will than be extracted from
the furnace model at four (4) elevations above the injection point and a level
of mixing at these planes determined. Additionally, velocity data will be
taken at the furnace outlet plane so that an exit velocity profile may be
determined. ‘

In addition to this, a one sixth (1/6) scale flow model of the OFA ductwork is
being fabricated. Once the ductwork is complete, velocity and pressure
measurement tests will be performed. Results from these tests will be
incorporated in the design of flow control devices, which will be evaluated
in future tests.
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DISCLAIMER

This report was prepared as an account of work sponsored by Southern
Company Services. Neither Southern Company Services, ABB
Combustion Engineering, nor any person acting on behalf of them:

A. Makes any warranty, expressed or implied, with respect to the use of
any information, apparatus, method, or process disclosed in this report or
that such use may not infringe privately owned rights: or

B. Assumes any liability with respect to the use of, or damages resulting
from the use of any apparatus, method, or process disclosed in this report.
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SCS Low NOx Deyelopment Pregram RNCFS-I. .

1.0 Introduction

Southern Company Services (SCS), the Department of Energy (DOE), and
ABB Combustion Engineering (CE) are involved in a program to develop
advanced tangentially fired combustion modifications for reducing NOx
emissions. The intent of this program is to demonstrate, at “full scale,” low
NOx technologies of a commercial prototype design. This demonstration
includes the addition of Low NOx Concentric Firing Systems (LNCFS) to
Gulf Power Company’s Lansing Smith #2 Unit. To investigate the fluid
mechanic performance of the proposed low NOx configurations, CE is
performing a physical isothermal flow model study at its Kreisinger
Development Laboratory (KDL) in Windsor, CT.

The objective of the isothermal flow model study is to assure optimum
performance of the Low NOx tangential firing systems. The effort centers
on understanding in-furnace flow and mixing phenomena for the various
low NOx firing systems as applied to the demonstration unit. This is being
done through an evaluation of each proposed firing system, along with the
evaluation of the burner only configuration, in the isothermal flow model
Baseline testing was performed on the burner only configuration which
exists in the Lansing Smith #2 Unit. Pollowing this testing, the LNCFS-II
and LNCFS-III configurations are to be modeled. Each of these
configurations include the addition of Separated Over Fire Air (SOFA) to
the furnace model. The LNCFS-III configuration also includes the
addition of Close Coupled Over Fire Air (CCOFA.) Each LNCFS
configuration will be evaluated from an Over Fire Air penetration, mixing,
and dispersion standpoint. The results from the flow modeling will provide
specific flow field information to help access the merits of each of these
configurations in the Lansing Smith #2 Unit.

This report presents the results of the physical cold flow modeling
conducted under Task IV of the SCS Low NOx Development Program. The
purpose of this task was to evaluate the flow fields within the LNCFS-II
configuration of the flow model. The furnace model, which was
constructed under Task I of this project, is a 1/12 scale model of the Lansing

ABB Combustion Engineering April 1991
Krelsinger Development Laboratory
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Smith No. 2 Unit, from the hopper through the furnace backpass. In
addition to this, modifications were made to the model in order to evaluate
the addition of SOFA. The evaluation of this configuration was divided into
two (2) screening levels. In the first, flow visualization was used to evaluate
a moderate number of operating conditions. These results were than used
to select “the best” configurations for additional quantitative tests, three
diménsional velocity mapping and gas mixing. The results from this cold
flow model will provide a basis to assess the proposed modifications to this
unit.

ARB Combustion Enginsering Aprit 1991
Kreisinger Develapment Laboratory
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2.0 Conclusions

An evaluation of the proposed LNCFS-II configuration for the Lansing
Smith #2 Unit was performed on a 1/12 scale isothermal flow model of this
unit. This was done through the use of flow visualization (screening level
one), and methane gas mixing, and three dimensional velocity mapping
tests (screening level two.) From these tests, the following conclusions have
been made:

1.

In general, the overall mixing performance for the OFA was found to be
pretty good for each of the configurations tested in the second screening
level. That is, the RMS deviation of the mixing It was also determined
that the mixing could be improved with the adjustment of the OFA firing
angles,

The recommended configuration for OFA operation, based on the flow
model testing, is Configuration #3 (Table 6-2.) For this configuration,
the firing angle for each nozzle was determined to maximize the OFA jet
penetration, mixing, and dispersion. In addition to this, no horizontal
tilt was necessary.

For 20% OFA operation, the jets do not penetrate into the center, but are
redirected by the cross flow and dispersed along the outer perimeter of
the furnace. The overall penetration is increased at higher OFA
operating rates, while it is decreased at the lower operating rates.

A downward tilt helps to improve the overall mixing level of the OFA
jets. However, this occurs at the expense of the separation between the
OFA and windbox firing zones. For the recommended configuration, no
tilt in the OFA nozzles was necessary to obtain a good level of mixing.

An upward tilt to the OFA nozzles will obviously increase the separation
between furnace zones. However, the overall mixing is reduced, mainly
due to the decrease in the residence time.

AB8 Combustion Engineering ' April 1981
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6. For the lower OFA operating rates, a down tilt becomes necessary to
provide an adequate level of mixing. This is limited to approximately 15°
before this flow becomes entrained in the windbox firing zone. This is
limited further, to about 10°, in order to establish a clear separation
zone.

7. For the higher OFA operating rates, the OFA jets have greater
penetration, due to the higher velocities. Because of this, the effect of the
OFA nozzle tilt is greater than 20% operation. The jets penetrate into the
lower furnace firing zone when a downtilt of approximately 7° is
imparted to the OFA nozzles. On the other hand, when the OFA nozzles
have an upward tilt, the OFA jets exit the furnace before full mixing can
occur.

8. At lower OFA operating rates, the OFA jet penetration, mixing, and
dispersion is reduced. In order to improve the overall mixing, it became
necessary to adjust the firing angles of the OFA nozzles and to impdse a
downtilt of 10°. '

ABB Combustion Engineering April 1991
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3.0 Modeling Theory

Isothermal flow models have long been recognized as a cost effective way of
evaluating the fluid mechanics within a furnace. Qualitative ,and
quantitative information gathered from these models are especially useful
in understanding and explaining unit performance and/or operation.
Qualitative information is usually restricted to visual flow observations,
whereas, quantitative information includes, but is not limited to, velocity
profiles, pressure distributions, and gas mixing data.

For an accurate simulation of the flow within a furnace, a physical model
must duplicate the fundamental controlling fluid mechanic phenomena.
These include: mixing of fuel and air streams, mixing of crossflow jets
with the main swirling flow, and the interaction of these jets in the
combustion zone.

As detailed by Beer and Chigier (1972), it is possible to model combustion
systems through the use of geometric, mechanical, and thermal
similarities. However, Beer (1966) and Spaulding (1963) indicate that it is
not possible to simultaneously reproduce all of the prototype's processes in
any one model. It becomes an important engineering consideration, then,
to critically select the most important parameters. This technique, known
as the "art of partial modeling”, is based on modeling only the dominant
processes and relating the conditions occurring in the furnace to physical
observations in the model.

The "art of partial modeling” has been successfully applied and verified in
numerous studies at KDL, the most recent by Anderson and Bianca (1989).
Here, the results of flow modeling studies were correlated to field
observations and measurements in coal fired furnaces. Based on these
results, and on those from the previously discussed references, the
following criteria was used as guidelines for the isothermal flow modeling
of the Gulf Power Company, Lansing Smith Station for Southern Company
Services:

ABB Corrbustior: Engineering April 1991
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1. Geometric Scaling:

To the extent possible, the isothermal flow model must be constructed
geometrically similar to the prototype. Scaling is achieved by
applying a scale factor between all the dimensions in the model and

prototype. As in any physical model, the linear scale factor, S, is
defined as;

S= dimensioni
dimension in model

For the Southern Company Services Program, the value of S was 12.

This value represents the scale of the physical model, constructed at

KDL, to the Lansing Smith No. 2 Station of Gulf Power Company.

Geometric scaling of the inlet air/fuel ports was not applicable, as

discussed in section 3 below.

2. Reynolds Number

Based on experience in modeling internal flows, if the Reynolds
number exceeds 10,000 (based on overall furnace conditions), the
transfer process of mass, momentum and heat transfer are
controlled by the turbulent flows in the model. In this case, the
molecular transport processes can be neglected. Since the Reynolds
number for the Lansing Smith No. 2 flow model is approximately
270,000, it is not necessary to equate the Reynolds number between
the furnace and the model.

3. Mass and Momentum

As detailed by Beer, et.al. (1984), it is standard practice to oversize the
burners in isothermal furnace models to account for the rapid
expansion of gasses exiting the burners due to the combustion of the
fuel and air. The Thring-Newby criteria (1953) has been utilized to
size such burners at KDL for a number of years. In general, the area
of the fuel/air admission assemblies is increased such that the total

ABR Combustion Engineering Aprit 1981
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burner area is equal to the ratio of the prototype’s burner inlet to
combustion zone gas densities. For the Southern Company Services
Program, the windboxes (simulated fuelair admission assemblies)
were scaled according to this criteria.

4, Jet Penetration

In order to simulate jet penetration/dispersion of a "hot" prototype in
an isothermal flow environment, it is necessary to scale the jets in
the model based on equivalent mass flow ratios. Simplifying
assumptions, based on modeling criteria developed by examining
single jet trajectories in a crossflow, have been used in designing the
Jet components of three-dimensional airflow models. This approach
insures the modeled jets behave in a similar fashion to furnace jets
in the case of a hot uniform flow field. The cold flow model jet velocity
and size are optimized to provide a conservative approximation of the
jet penetration to the furnace centerline. Figure 3-1 describes the
position of the jet centerline in a uniform crossflow. Jet penetration
characteristics, as described by Patrick (1965) and Beer and Chigier
(1972), have been studied in KDL to determine the appropriate criteria
which will provide the desired model to prototype jet similitude.

In general, the mass flow rate ratio of the model is equivalent to the
mass flow rate ratio of the prototype, where the mass flow rate ratio
is expressed as the ratio of the mass flow rate of the jets to the mass
flow rate of the crossflow. For the Southern Company Services flow
model, the nozzle sizes were increased to compensate for the gas
density differences between the hot furnace gasses and the much
cooler over fire air.

ABB Combustion Enginesring April 1991
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4.0 Facility Descriptions

This section of the report describes the flow model, test facilities, and
instrumentation systems used to perform the LNCFS-II evaluations.

4,1 Lansing Smith No. 2 Flow Model Description

Flow modeling was done on a 1/12 scale, geometrically similar model of the
Lansing Smith No. 2 Unit, shown in Figure 4-1. The flow model
encompasses the entire furnace from the hopper through the economizer
outlet. Included in the flow model were the fuel admission assemblies, all
radiant and convective heat transfer surfaces within the first sections of the
upper furnace, along with the addition of the separated OFA nozzles.
Figure 4-2 is a side elevation of the model, showing the nominal model
dimensions and the test plane locations.

The furnace model was built primarily of 1/2” acrylic glass, permitting the
recording of the flow visualization tests. All dimensions were maintained
to a tolerance of + 1/16”, which corresponds to * 3/4” full scale. The flow
model was erected in the KDL Flow Model Test Facility, Figure 4-3. This
facility consists of a high volume fan and duct system capable of testing both
suction and pressurized models at flow rates up to 20,000 SCFM. Where
additional air sources are needed, (i.e. the OFA) supplemental air is
supplied via a Lamson high pressure blower (4,000 SCFM @ 4.0 psi) or
through the labs compressed air system (1,200 SCFM @ a header pressure
of 90 psi.)

The flow model was operated under suction (induced draft) using ambient
air as the working fluid. Bell mouths, added to the inlets of the windboxes,
reduce the entrance losses and provide uniform velocity profiles at the inlet
to the furnace model. Over fire air was supplied via a header which was
attached to the high pressure Lamson blower. Each of these flows was

independently controlled and monitored, so that the proper air flow splits
could be obtained. |

The heat transfer surfaces were constructed of perforated metal plate and

ABE Combustion Englnesring April 1991
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paper tubing. These sections were shaped to simulate heat transfer surface
geometry. The free areas of the plates and their spacing within the model
were determined such that the axial and transverse pressure drop
coefficients were accurately simulated.

-

The fuel admission assemblies were modeled as part of the windboxes. The
free areas of the compartments were adjusted according to the Thring-
Newby criteria, accounting for the change of density which occurs as a
result of combustion within the furnace. Perforated plate was added to
achieve the proper velocity splits between the primary air /coal nozzles and
secondary air nozzles. The firing circle in the model was set to model that of
the prototype through geometric scaling, A schematic of the modeled firing
circle /angles is shown in Figure 4-4,

The Over Fire Air (OFA) injection nozzles were designed to simulate the
corresponding jet trajectories in the prototype. Each nozzle was sized as a
single jet, such that the mass and penetration ratios of the prototype jet and
the model jet were equivalent. These nozzles were also constructed to allow
for variable yaw and tilt settings within the model. Figure 4-5 shows a
closer view of these nozzles.

Methane, used as a tracer gas for the mixing studies, was introduced into
the over fire air at a point far upstream from the nozzle exits. This insured
that the tracer gas was fully mixed with the OFA before entering the
furnace.

4.2 Automatic Probe Traversing Device

All quantitative three dimensional velocity and pressure mapping within
the flow model was performed with a calibrated five-hole pitot tube coupled
to a computer controlled traversing device and data acquisition system.
This system, developed and built at KDL, is called the Automatic Probe
Traversing Device or APTD.

The APTD is a programmable data acquisition system which automatically
positions and nulls the five-hole pitot tube, and records all pressure

ABB Combustion Engineering April 1891
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Southern Company Services
Lansing Smith Unit #2
LNCFS-II Model Configuration
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OFA Nozzle with Variable Tilt

Figure4-5 OFA Nozze for Lansing Smith #2 Flow Model
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readings on the laboratory's central computer system. Figure 4-6 shows
the five-hole pitot tube, the APTD, and the local programmable
controller/electronic manometer cabinet. The motion of the probe is
controlled by a local processor. This processor is programmed by the
facility operator at the start of each traverse by entering the appropriate
operational parameters for the particular test. These parameters include:
instrument type and serial number (for accessing the most recent
calibrations), test number, test plane, the number of data points, the
distance between each point, and the maximum distance of probe travel (a
safety feature.) Once these operational parameters have been entered, the
traverse is started by indicating the desired operational mode.

The processor controls stepping motors which move the probe to the pre-
programmed test point location and rotates it until the direction of flow is
obtained. The outputs of the four pressure transmitters attached to the
probe are then recorded along with probe position, angle, test number, test
plane, etc. by the central data acquisition computer.

43 Three Dimensional Pitot Tube Probe

A commercially available five-hole, directional sensing, pitot tube, shown
in Figure 4-7, was used to obtain the velocity data. The probe has five
pressure sensing holes located at its tip. The centrally located pressure
hole, P1, measures the total or impact pressure of the fluid, while two
lateral holes, P2 and P3, measure the static pressure. If the probe is rotated
around its long axis until P2=P3, the plane of flow can be identified and
measured. However, since the condition P2=P3 can be given at two
locations 180° apart, the correct vector plane is identified when P2=P3 and
P1 has its highest positive value with respect to P2 and P3. An angular
encoder is attached to the probe at its base so that the angle of this vector
plane, commonly called the yaw angle, can be measured. The yaw angle
indicates the plane of flow but does not give the flow angle within this piane.
This flow angle, known as the pitch angle, is determined by the differential
pressure P4-P5.

ABB Combustion Engineering - April 1991
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In actual practice, four (4) differential pressure readings are required to
fully define the flow at a particular point in the flow field. These pressure
differentials are:

P1-Patm = Indicated total pressure with respect to atmosphere -
P1-P2 = Indicated velocity pressure

P2-P3 = Yaw angle pressure

P4-P5 = Pitch angle pressure

Calibration curves are used to relate these pressure differentials to the
actual pressures and pitch angles. These curves are generated through
detailed probe calibrations, which were performed at the beginning of the
test series, These curves, given in Appendix A, enable the determination of
the actual velocity head and pitch angle at each measuring point. Knowing
this data and the yaw angle, the x, y, z, or the normal, radial, and
tangential velocity vectors are determined using simple geometric
relationships.

4.4 Laser Absorption Spectrophotometer

An automatic laser based system, the Laser Absorption Spectrophotometer,
has been developed in KDL to make tracer gas concentration
measurements using the available APTD hardware. A schematic of this
Laser Absorption Spectrophotometer is shown in Figure 4-8. The APTD
positions the five-hole pitot probe at each of a matrix of points in a plane, as
specified in the test set-up. A sample of the tracer gas is then extracted
from the flow model by a suction pump attached to the probe and analyzed
by the spectrophotometer.

The sample, in going from the probe to the pump exhaust, passes through a
chamber through which one of two equally intense laser beams is passed.
The wavelength of the laser light is tuned to the absorption frequency of the
tracer gas, methane. The level of attenuation, when compared to the
reference beam, is proportional to the concentration of the tracer gas at the
sampling point in the flow model. Before and after each traverse into the
model, the system is zeroed. Two samples per test point are drawn and the
results sent to the laboratory central data acquisition computer. A full

ABB Combustion Engineering April 1891
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calibration is performed on this system prior to the model testing. This
calibration is given in Appendix B.

4.5 Smoke Generator

A commercially available smoke generator was utilized during the flow
visualization tests. The smoke generation system consisted of a gas heater,
a light oil smoke fluid reservoir, and tube coil. The fluid was pumped
through the tube coil, which was heated, causing it to flash into a dense
white stream of smoke. This stream was then injected into the various
ports of interest within the model.

ABB Combustian Engineering April 1991
Kreisinger Dwolosr:’:nt Laboratory
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5.0 Lansing Smith Flow Model Testing

5.1 Flow Model Set Up

The Lansing Smith flow model and the criteria used to design it have been
discussed in the previous sections. In general terms, the flow model is
representative of the actual prototype. The final step in achieving model
similitude is to configure the model inlet conditions such that they match,
as closely as possible, the inlet conditions which exist in the prototype.
Since the LNCFS-II modifications are currently underway and actual field
data is not available, the model flow splits were modified such that they
produced profiles similar to that of the design operating conditions.

The overall distribution of the flow quantities between the sources of air was
handled in the following manner. The Lansing Smith flow model was
nominally operated under induced draft. The total air flow through the
model was measured using a venturi which was installed in the main duct
downstream of the Model Area Fan. The OFA flow was supplied through
the Lamson blower and was measured independantly via an orifice which
was located at the blower inlet. The OFA flow was than subtracted from the
total model air flow in order to obtain the flow through the windboxes.
Dampers in the air source lines allowed for adjustment of the flow streams
until the desired total flow ratios had been achieved.

Correctly modeling the initial flow distributions is necessary where the
evaluation of multiple gas streams is considered. For the Lansing Smith
model, it was necessary to model the windbox flows as closely as possible in
order to obtain meaningful measures of the gas mixing of the OFA at
higher levels in the furnace. Velocity ratios between the primary and
secondary air nozzles were determined based on MCR operating conditions.
Flow splits between the primary and secondary air nozzles were controlled
through the use of perforated plate in the windboxes. The velocities
through each nozzle were measured with a pitot tube and the flow through
each determined.

ABB Combustion Englneeri Aprii 1991
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5.2 Test Matrix

The isothermal flow model test program was divided into two (2) separate
screening levels (Figure 5-1) designed to lead, in an interactive manner, to
recommended OFA operation. In the first level, flow visualization tests
were performed on twenty (20) different OFA configurations to evaluate
those conditions which “look the best” from an OFA penetration, mixing,
and dispersion standpoint. In the second level, quantitative tests were
performed on those configurations which were chosen from the first level.
These tests included methane gas mixing tests and 3-D velocity mapping.
For each of these configurations, gas mixing data was taken at planes 1, 2,
3, and 4 while 3-D velocity data was taken only at plane 4. Each of these test
planes were horizontal planes located above the windboxes, above the OFA
nozzles, below the arch, and at the furnace outlet plane, respectively.
Figure 5-2 shows the location of these planes in the flow model.

ABB Combustion Engineeting April 1991
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Figure 5-2 Test Plane Location
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6.0 Results

The objective of the flow modeling effort was to evaluate the in-furnace flow
and mixing phenomena of the LNCFS-II configuration, which is currently
- being upgraded in the Lansing Smith No. 2 Unit . First, flow visualization
tests were used as a preliminary screening tool to evaluate a moderate
number of operating conditions. Results from this testing were than used
to select those configurations which “looked the best,” from an OFA
penetration, dispersion, and mixing standpoint, for additional quantitative
tests. The quantitative tests, methane gas mixing and three dimensional
velocity mapping, were then used to select the OFA configurations
providing the desired level of mixing in the furnace.

6.1 Flow Visualization

Flow visualization tests were used as a qualitative method of observing and
evaluating the flow fields within the model. These tests were performed on
the baseline configuration (no OFA), as well as twenty (22) different
operating conditions of the LNCFS-II model configuration with OFA. Each
of these tests represented a combination of furnace load and OFA firing
angle. In addition to this, the effect of OFA tilt was evaluated for each test
configuration.

Model flow patterns were visualized by the injection of smoke through the
windboxes and the OFA nozzles. The smoke was used to evaluate the
furnace swirl, along with the OFA penetration, mixing, and dispersion.
This testing was performed at reduced model flow rates, while maintaining
the proper scaling parameters and flow splits. These reduced flow rates
were used to improve the visibility of the smoke within the flow model. A
video camera was used to record the flow patterns, with a copy of this tape
is included as an Appendix. The information gained from these tests was
used to develop the matrix for quantitative gas mixing and 3-D velocity tests.

Flow visualization tests were first performed on the baseline configuration
to evaluate the flow fields within the furnace. The smoke was injected
through each of the four (4) windboxes to qualitatively evaluate the flow

ABB Combustien Enginearing April 1981
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swirl and fireball characteristics. The patterns of the smoke as it entered
through the different windbox compartments were also observed. Results
from this testing showed that the flow entering the furnace through the
lower windboxes experienced recirculation into the hopper. For the higher
windbox elevations, the flow penetrated towards the center of the furnace
and began to form the “fireball” in the main firing zone. Furthermore, it
could be seen that the overall penetration of the windbox jets was not very
strong. Typically, the flow would instead be redirected along the wall of the
furnace before it reached the center.

After the baseline test was performed, smoke visualization tests were
performed on the twenty two (22) OFA configurations. Flow visualization
tests for the different configurations were performed for three (3) OFA flow
rates. In addition to the design flow of 20%, tests were performed on a
reduced flow (12% OFA) and an increased flow (24% OFA.) A summary of
these test configurations is given in Table 6-1. Instead of describing the
results of each of these tests, the discussion will focus on the OFA
performance for each of the three (3) OFA flows tested. For each of these,
the performance will be evaluated as a function of the OFA nozzle firing
angle and the tilt.

In general, the performance for the 20% OFA condition with a 0° firing
angle for each of the four (4) corners was as follows. The jets began to
penetrate towards the center of the furnace, but became quickly entrained
in the cross flow. As this happened, the jets were redirected towards the
walls and were dispersed along the outer perimeter of the furnace flow.
Typical results of flow visualization tests are shown in Figures 6-1 and 6-2.
When a downward tilt (Figure 6-3) was imparted to these nozzles, the
penetration was increased, while the overall dispersion was also improved.
However, when this down tilt reaches approximately 10°, the jets begin to
mix with the windbox firing zone. In so doing, the separation zone which
is required for the staged burning of the separated OFA is eliminated. As
an upward tilt was imparted to these nozzles, no improvements were
noticed in the jet penetration and mixing. In fact, this type of tilt actually
reduced the overall jet dispersion in the furnace.

ABB Combustion Engineering April 1991
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In general, the penetration and mixing of the OFA jets was improved with
the adjustment of the nozzle firing angles, Figure 6-4. In the model, each
corner was adjusted to optimize the furnace coverage. That is, a series of
tests were performed in which the nozzle firing angles were adjusted to
improve the penetration and mixing of individual corners. It was through
this technique that those configurations tested in the next screening level
were chosen, see Table 6-2.

For the reduced operation of 12% OFA, the overall performance was much
lower than 20% OFA as far as jet penetration, mixing, and dispersion. At
this setﬁng, the jet velocity is reduced, thus reducing the jet penetration. In
order to improve the overall mixing for this set up, it was not only necessary
to adjust the firing angles of each nozzle, but also to impose a downtilt in
the OFA nozzles of 10-15°.

Finally, for the increased operation of 24% OFA, the overall performance
tends to improve from a penetration and mixing standpoint. The jets, with
higher velocities, are able to penetrate deeper into the furnace cross flow.
Increased mixing also occurs at this setting. However, with the higher jet
velocities, the nozzle tilts were restricted. Downtilt was limited to about 5°
before the jets became entrained in the windbox firing zone. Also, when a
positive tilt was imparted on the nozzles, the jets were carried to the back
pass much more rapidly.

ABB Combustion Engineering April 1891
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1 . . . .
Test No. Load % QFA Corner 1 Corner 2 Corner Corner 4
1 MCR 0% N/A N/A N/A " N/A
2 MCR 20% Qe Q° Q° Q°
3 MCR 20% -5° -§° -5° -5°
4 MCR 20% -10° -10° -10° -10°
5 MCR 20% +5° +5° +5° +5°
6 MCR 12% Q° Qe Q° Q°
7 MCR 12% -10° -10° -10° -10°
8 MCR 12% +10° +1Q° -10° -10°
9 MCR 24% 0° Q° Q° Q°
10 MCR 24% +7° +7° +7° +7°
11 MCR, 24% +7° +7° -7° i
12 MCR 12% +10° +10° +10° +10°
13 MCR 20% Q° Qe -7° -7°
14 MCR 20% -8° -8° -8° -8°
15 MCR 20% -8° -§° -8° +5°
16 "MCR 20% -8° -8° 0° 0°
17 MCR 20% +5° -8° +5° -8°
18 MCR 20% +5° -8° -10° -8°
19 MCR 20% -15°/0°/+15° | -15°%0°/+15° | -15°0°/+15° | -15°/0°+15°
20 MCR 12% -15°/0°/+15° | -15°/0°/+15° | -15°/0°%+15° -15°/0°/+15°
21 MCR 24% -15%/0°/+15° | -15°/0°/+15° | -15°/0°/+15° -15°/0°/+15°
22 MCR 24% +15°0°-15° | +15°0°-15° | +15°40°/-15° | +15°/0°-15°
23 MCR 20% +15°/0/-15° | +15°/0%-15° | +15°/0%-15° | +15°/0°/-15°

Front
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Smoke Introduced Through the OFA Nozzles

Figure 6-1 Typical Flow Visualization Results
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Lansing Smith Unit #2
LNCFS-II Model Configuration

Smoke Introduced Through the OFA Nozzles

Figure 6-2 Typical Flow Visualization Results
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Close Up of Smoke Introduced Through the OFA Nozzles

Figure 6-3 Typical Flow Visualization Results
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6.2 Methane Gas Mixing

Based on the results from the flow visualization testing, a test matrix for the
second screening level was developed, as mentioned in Table 6-2. This second
screening level involved quantitative mixing tests of five (5) OFA
configurations utilizing methane as a tracer gas. The purpose of these tests
was to quantitatively measure the penetration, dispersion, and mixing of the
OFA with the furnace gases in order to select optimum OFA configurations.

Methane samples were extracted from the flow model through the five hole
probe, attached fo the APTD. Samples were analyzed by the laser spectro-
photometer, previously discussed, and stored in the lab’s data acquisition
system. This data was later transformed to gas concentrations (ppm) within
the model. The measured gas concentrations were normalized to a reference
value, taken as the “well mixed” value at the model’s outlet. This data was
reported in both tabular form, typical of Table 6-3, and graphical form.

For each of these tests, the flow model was operated at a simulated 100% MCR
with 20% OFA. The model was operated under induced draft and the QFA
under forced draft, the flow being provided by a high pressure Lamson blower.
In order to assure a “well-mixed” tracer gas concentration at each of the OFA
nozzle outlets, the methane was injected into the discharge of this blower at a
point far enough upstream to permit adequate mixing. The flow of methane
was set using precision rotometers such that a “well-mixed” value of
approximately 1200 ppm at the model outlet was achieved. A schematic of the
methane injection system is shown in Figure 6-5. The concentration of the
methane gas was than mapped over the four (4) test planes detailed previcusly
in Figure 5-2. The concentration data obtained at each plane was normalized
to the “well-mixed” concentration obtained at the model outlet, with each plot
generated using the same scaling factors so that they may be compared. For
the purpose of clarity, all the plots are presented at the end of this section. The
degree of uniformity in concentration across the plane was statistically
quantified as the RMS deviation of the mass weighted distribution of methane
measured at the test plane. The lower the coefficient, the better the mixing is
across the test plane.

ABB Combustion Engineering April 181
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Comparing the data at plane 1, contour and isoconcentration plots are
presented in Figures 6-6 through 6-15. In addition to these plots, the
normalized methane concentrations are shown in Figures 6-16 through 6-20.
This plane is located just under the OFA nozzles and is used to show the
separation zone between the windbox firing zone and the OFA injection.
Generally, it can be seen that there is little OFA recirculation in this zone,
with the exception of configuration #5. For this configuration, there is a down
tilt of 5° to the OFA nozzles. Thus, it can be seen that a separation zone
between the windbox and OFA nozzles exists when the OFA nozzles are firing
horizontally. However, the addition of downtilt to these nozzles will decrease
this separation. In addition to this, it can be seen that there is recirculation in
the rear left corner of configuration #4. However, it should be noted that the
peak in this plot is a function of twe (2) data points only, and does not
encompass as much of the furnace as appears in the plot.

Comparing the data at plane 2, contour and isoconcentration plots, along with
the normalized methane concentrations, are presented in Figures 6-21
through 6-35. From this data, the penetration of the OFA jets can be seen as
peaks in the isoconcentration plots. Generally, these jets penetrate into the
cross flow and, as they mix with the furnace gases, disperse along the furnace
walls. This corresponds with the results from the flow visualization tests. It
can also be seen that the locally high concentrations, which result from the
OFA jets, can be reduced by “fanning” the nozzles. That is, when each of the
three (3) nozzles per corner were set at different firing angles, the locally high
concentrations of methane at this plane were reduced. Also, it can be seen
that those jets which run along the front and rear walls of the furnace tend to
have longer penetration lengths than those which run along the sides.
Finally, the degree of “mixedness” is limited for this test plane because of the
close proximity to the OFA nozzles. Therefore, the RMS deviation, shown in
Figure 6-36, for each of these configurations is high.

Again, contour and isoconcentration plots, along with the normalized
methane concentration values, for plane 3 are presented in Figures 6-37
through 6-51. This plane, located just under the arch, shows the progression
of the methane mixing within the furnace model. Generally, the overall

ABB Combustion Engineering April 1991
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mixing at this plane is greatly improved, with most of the concentrations
falling between +25% of the well mixed value, as can be seen from the contour
plots. As expected, the RMS deviation for this plane, Figure 6-52, is much
lower than plane 2, due to the increased mixing time of the OFA jets. It can
also be seen that there is also a tendency for higher methane concentrations to
be located along the front and rear walls of the furnace model. This is more
_ than likely a result of the aspect ratio and the furnace aercdynamics. With the
front and rear walls of the furnace 1.54 times longer than the side walls, the
OFA jets which penetrate along the side walls will become entrained along the
front and rear walls before those jets which come in along the front and rear
walls move along the side walls. That is, there is more OFA mass through the
areas along the front and rear walls then there is along the side walls..

Finally, the plane 4 contour and isoconcentration plots, along with the
normalized methane concentration values are presented in Figures 6-53
through 6-67. This plane, located at the nose of the arch, shows the
progression of the OFA mixing as the flow is exiting the furnace. Typically, an
RMS deviation less than 20% at the furnace outlet plane is considered well
mixed for OFA injection. For each of the configurations tested, the RMS
deviation was less than 18%, with these values shown in Figure 6-68.

The overall best OFA configuration tested from a mixing standpoint was
configuration #3. It provided the best overall mixing of any horizontal OFA
configuration, with an RMS deviation of 11.8%. Alsa, the overall mixing was
similar to an OFA configuration with a downtilt (configuration #5), without
reducing the separation zone between the windbox firing zone and OFA

injection. The overall mixing characteristics for each of the configurations
tested is shown in Figure 6-69.
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Config. #2 Config. #3 Config. #4 Config. #§

Config. #1

Test Identification

Figure 6-36
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Smith Flow Model
Methane RMS Deviation - Plane 3
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Lansing Smith Flow Model
Methane RMS Deviation - Plane 4
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Figure 6-68
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SC9 Low NOx Development Program LNCFSH

6.3 Velocity Testing

In addition to the methane gas mixing tests, three dimensional velocity test
data was obtained for each of the five (5) OFA configurations and the baseline
configuration. This velocity mapping was performed at the furnace outlet
plane for each configuration to characterize the gas flow distribution leaving
the furnace.

The velocity data was taken using the five hole pitot probe and the APTD,
previously discussed. Pressure measurements were collected and stored in
the data acquisition system and central computer, coupled to the APTD. The
computer calculates the x, y, and z components of the flow, where the x
direction is positive as the flow moves along the rear to the front of the furnace,
the y direction is positive as the flow moves from left to right in the furnace,
and the z direction is positive when the flow is upward in the furnace. The
measured velocities were than reported in both tabular form, typical of Table
6-4, and graphical form.

From the three dimensional velocity data, the normalized upward velocity data
was plotted as surface and contour plots, and is shown in Figures 6-70 through
6-81. Additionally, the normalized value of the axial (upward) velocity is
presented in Figures 6-82 through 6-87. Results from these tests show that the
upward flow leaving the furnace is concentrated along the left rear corner,
typical of tangentially fired units. This is primarily due to the effects of the
swirl on the leaving gasses. Furthermore, the higher flows occur along the
walls of the model with reduced upward flow through the center. In general,
the flow distribution at the furnace outlet plane was fairly well distributed,
with RMS deviations between 20% and 25%, as shown in Figure 6-88. The RMS
deviation for configuration #3 was 21.3%, which was the lowest of the
configurations tested. In addition to the overall plane distribution, the side to
side velocity distribution was also determined. This was done by taking the
average velocity across the depth of the furnace and plotting it across the
width. Figure 6-89 shows these values for each configuration. From this data,
it can be seen that configuration #2 has a strong left to right imbalance. This
imhalance may cause a temperature maldistribution at the furnace outlet

ABB Combustion Engineering Aprif 1991
Kreisinger Dwolo?ngm Laboratory
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$CS Low NOx Development Program LNCFS-i

plane, resulting in high tube metal temperatures. Although the reason for
this imbalance is not known, it should be noted that this is the only
configuration tested which had all four (4) of the OFA nozzles at firing angle
which were counter-rotational to the furnace swirl. Also, from this_data, it
can be seen that the side to side distribution for configuration #3 is fairly
uniform, which may result in a more uniform temperature distribution at the
superheater.

Additionally, the tangential velocities for each of these configurations are
presented in the form of a vector plots. Each vector plot was generated using
the same scaling factors, so that they could be compared, and are presented in
Figures 6-90 through 6-96. From these plots, the counter clockwise swirl,
imposed by the tangential firing system, can be easily seen. The center of this
swirl is located near the center of the test plane, as expected. Generally,
higher tangential velocities are found along the front and rear walls of the
furnace, as these walls are longer than the side walls. This flow corresponds
to that seen in the flow visualization tests.

ABB Combustion Engineering April 1891
Kraisinger Development Laboratory
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Lansing Smith #2 Flow Model
Velocity RMS at Furnace Outlet Plane
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Test Identification

Figure 6-88
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DISCLAIMER

This report was prepared as an account of work sponsored by Southern
Company Services. Neither Southern Company Services, ABB
Combustion Engineering, nor any person acting on behalf of them:

A. Makes any warranty, expressed or implied, with respect to the use of
any information, apparatus, method, or process disclosed in this report or
that such use may not infringe privately owned rights: or

B. Assumes any liability with respect to the use of, or damages resulting
from the use of any apparatus, method, or process disclosed in this report.
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1.0 Introduction

Southern Company Services (SCS), the Department of Energy (DOE), and
ABB Combustion Engineering (CE) are involved in a program to develop
advanced tangentially fired combustion modifications for reducing NOx
emissions. The intent of this program is to demonstrate, at “full scale,” low
NOx technologies of a commercial prototype design. This demonstration
includes the addition of Low NOx Concentric Firing Systems (LNCFS) to
Gulf Power Company’s Lansing Smith #2 Unit. To investigate the fluid
mechanic performance of the proposed low NOx configurations, CE
performed a physical isothermal flow model study at its Kreisinger
Development Laboratory (KDL) in Windsor, CT.

The objective of the isothermal flow model study was to assure optimum
performance of the Low NOx tangential firing systems. The effort centers
on understanding in-furnace flow and mixing phenomena for the various
low NOx firing systems as applied to the demonstration unit. This is being
done through an evaluation of each proposed firing system, along with the
evaluation of the burner only configuration, in the isothermal flow model.

Baseline testing was performed on the burner only configuration which
exists in the Lansing Smith #2 Unit. This testing was followed by testing
the LNCFS-II configuration, which included the addition of Separated Over
Fire Air (SOFA), in the physical flow model. Finally, the LNCFS-III
“configuration was tested in the flow model. This configuration included the
addition of Close Coupled Over Fire Air (CCOFA) and clustered burners,
along with the SOFA. Each LNCFS configuration was evaluated from an
Over Fire Air penetration, mixing, and dispersion standpoint. The results
from the flow modeling was to provide specific flow field information to help
access the merits of each of these configurations in the Lansing Smith #2
Unit.

This report presents the results of the physical cold flow modeling
conducted under Task V of the SCS Low NOx Development Program. The
purpose of this task was to evaluate the flow fields within the LNCFS-III

ABB Combustion Engineering 1991
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configuration of the flow model. The furnace model, which was
constructed under Task I of this project, is a 1/12 scale model of the Lansing
Smith No. 2 Unit, from the hopper through the furnace backpass. In
addition to LNCFS-II, modifications were made to the model in order to
evaluate the addition of SOFA and CCOFA. The evaluation was divided into
two (2) screening levels. In the first, flow visualization was used to evaluate
a moderate number of operating conditions. These results were than used
to select “the best” configurations for additional quantitative tests, three
dimensional velocity mapping and gas mixing. The results from this cold
flow model will provide a basis to assess performance of the proposed
modifications to this unit.

ABB Combustion Enginasring May 1991 -
Krelsingar Development Laboratory
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20 Conclusions

An evaluation of the proposed LNCFS-III configuration for the Lansing
Smith #2 Unit was performed through the use of flow visualization
(screening level one), methane gas mixing, and three dimensional velocity
mapping tests (screening level two.) From these tests, the following
conclusions have been made:

1,

In general, the OFA was found to be fairly well mixed at the furnace
outlet plane for each of the configurations tested in the second screening
level. That is, the RMS deviation of the mixing was typically less than
20%. It was also determined that the mixing could be improved with the
adjustment of the OFA firing angles.

The recommended configuration for OFA operation, based on this flow
model testing, is Configuration #5 (see Table 6-2.) For this
configuration, the firing angles of each of the SOFA nozzles were
determined in a manner such that the OFA jet penetration, mixing, and
dispersion was maximized. It was not necessary to impose a horizontal
tilt to the nozzles.

. For the design operating conditions (15% CCOFA and 20% SOFA), the

jets do not penetrate into the center of the furnace, but are redirected by
the crossflow and dispersed along the outer perimeter of the furnace.

The overall penetration of the SOFA jets increases with higher velocities
and decreases with lower velocities.

A downward tilt helps to improve the overall mixing level of the OFA
jets. However, this occurs at the expense of the separation between the
OFA and windbox firing zones. For the recommended configuration, no
tilt in the OFA nozzles was necessary to obtain a good level of mixing.

An upward tilt to the OFA nozzles will obviously increase the separation
between furnace zones. However, the overall mixing is reduced, mainly
due to the decrease in OFA residence time.

ARB Combustion Engineering
Kreisinger Development Laboratory
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7. For the higher SOFA operating rates (24% SOFA), the jet penetration,
mixing, and dispersion is increased. However, the horizontal tilt
becomes limited. With a down tilt of greater than 5°, the SOFA jets will
begin to penetrate into the lower furnace firing zone. On the other Hand,
when an upward tilt is imparted, the mixing time of the jets is reduced.

8. At lower SOFA operating flow rates (12% SOFA), the jet penetration,
mixing, and dispersion is reduced. To improve the overall mixing, it
became necessary to impose a downtilt of 10° to the SOFA nozzles.

9. The side to side velocity distribution generally shows higher flow rates
along the side walls of the furnace at the furnace outlet plane. There is
also a side to side flow imbalance in which there is more flow along the
side walls, with reduced flow at the center of the furnace.

ABB Combustion Enginesring May 1981
Kreisinger Development Laboratory
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3.0 Modeling Theory

Isothermal flow models have long been recognized as a cost effective way of
evaluating the fluid mechanics within a furnace. Qualitative .and
quantitative information gathered from these models are especially useful
in understanding and explaining unit performance and/or operation.
Qualitative information is usually restricted to visual flow observations,
whereas, quantitative information includes, but is not limited to, velocity
profiles, pressure distributions, and gas mixing data.

For an accurate simulation of the flow within a furnace, a physical model
must duplicate the fundamental controlling fluid mechanic phenomena.
These include: mixing of fuel and air streams, mixing of crossflow jets
with the main swirling flow, and the interaction of these jets in the
combustion zone. | |

As detailed by Beer and Chigier (1972), it is pdssible to model combustion
systems through the use of geometric, mechanical, and thermal
similarities. However, Beer (1966) and Spaulding (1963) indicate that it is
not, possible to simultaneously reproduce all of the prototype's processes in
any one model. It becomes an important engineering consideration, then,
to critically select the most important parameters. This technique, known
as the "art of partial modeling", is based on modeling only the dominant
processes and relating the conditions occurring in the furnace to physical
observations in the model.

The "art of partial modeling" has been successfully applied and verified in
numerous studies at KDL, the most recent by Anderson and Bianca (1989).
Here, the results of flow modeling studies were correlated to field
observations and measurements in coal fired furnaces. Based on these
results, and on those from the previously discussed references, the
following criteria was used as guidelines for the isothermal flow modeling
of the Gulf Power Company, Lansing Smith Station for Southern Company
Services:

ABB Combustion Enginesring 1991
Kralsinger Development Laboratory ey
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1. Geometric Scaling:

To the extent possible, the isothermal flow model must be constructed
geometrically similar to the prototype. Scaling is achieved by
applying a scale factor between all the dimensions in the model and

prototype. As in any physical model, the linear scale factor, S, is
defined as;

S=

dimension in model

For the Southern Company Services Program, the value of S was 12.
This value represents the scale of the physical model, constructed at
KDL, to the Lansing Smith No. 2 Station of Gulf Power Company.
Geometric scaling of the inlet air/fuel ports was not applicable, as
discussed in section 3 below.

2. Reynolds Number

Based on experience in modeling internal flows, if the Reynolds
number exceeds 10,000 (based on overall furnace conditions), the
transfer process of mass, momentum and heat transfer are
controlled by the turbulent flows in the model. In this case, the
molecular transport processes can be neglected. Since the Reynolds
number for the Lansing Smith No. 2 flow model is approximately
270,000, it is not necessary to equate the Reynolds number between
the furnace and the model.

3. Mass and Momentum

As detailed by Beer, et.al. (1984), it is standard practice to oversize the
burners in isothermal furnace models to account for the rapid
expansion of gasses exiting the burners due to the combustion of the
fuel and air. The Thring-Newby criteria (1953) has been utilized to
size such burners at KDL for a number of years. In general, the area
of the fuel/air admission assemblies is increased such that the total

ABB Combustion Enginsering - 1991
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burner area is equal to the ratio of the prototype’s burner inlet to
combustion zone gas densities. For the Southern Company Services
Program, the windboxes (simulated fuel/air admission assembiies)
were scaled according to this criteria.

4, Jet Penetration

In order to simulate jet penetration/dispersion of a "hot" prototype in
an isothermal flow environment, it is necessary to scale the jets in
the model based on equivalent mass flow ratios. Simplifying
assumptions, based on modeling criteria developed by examining
single jet trajectories in a crossflow, have been used in designing the
jet components of three-dimensional airflow models. This approach
insures the modeled jets behave in a similar fashion to furnace jets
in the case of a hot uniform flow field. The cold flow model jet velocity
and size are optimized to provide a conservative approximation of the
jet penetration to the furnace centerline. Figure 3-1 describes the
position of the jet centerline in a uniform crossflow. Jet penetration
characteristics, as described by Patrick (1965) and Beer and Chigier
(1972), have been studied in KDL to determine the appropriate criteria
which will provide the desired model to prototype jet similitude.

In general, the mass flow rate ratio of the model is equivalent to the
mass flow rate ratio of the prototype, where the mass flow rate ratio
is expressed as the ratio of the mass flow rate of the jets to the mass
flow rate of the crossflow. For the Southern Company Services flow
model, the nozzle sizes were increased to compensate for the gas
density differences between the hot furnace gasses and the much
cooler over fire air.

ABB Combustian Enginearing May 1991
Krelsinger Development Laboratory
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4.0 Facility Descriptions

This section of the report describes the flow model, test facilities, and
instrumentation systems used to perform the LNCFS-III evaluations. -

4.1 Lansing Smith No. 2 Flow Model Description

Flow modeling was done on a 1/12 scale, geometrically similar model of the
Lansing Smith No, 2 Unit, shown in Figure 4-1. The flow model
encompasses the entire furnace from the hopper through the economizer
outlet. Included in the flow model were the fuel admission assemblies, all
radiant and convective heat transfer surfaces within the first sections of the
upper furnace, along with the addition of the separated OFA nozzles.
Figure 4-2 is a side elevation of the model, showing the nominai model
dimensions and the test plane locations.

The furnace model was built primarily of 1/2” acrylic glass, permitting the
recording of the flow visualization tests. All dimensions were maintained
to a tolerance of £ 1/16”, which corresponds to = 3/4” full scale. The flow
model was erected in the KDL Flow Model Test Facility, Figure 4-3. This
facility consists of a high volume fan and duct system capable of testing both
suction and pressurized models at flow rates up to 20,000 SCFM. Where
additional air sources are needed, (i.e. the OFA) supplemental air is
supplied via a Lamson high pressure blower (4,000 SCFM @ 4.0 psi) or

through the labs compressed air system (1,200 SCFM @ a header pressure
of 90 psi.)

The flow model was operated under suction (induced draft) using ambient
air as the working fluid. Bell mouths, added to the inlets of the windboxes,
reduce the entrance losses and provide uniform velocity profiles at the inlet
to the furnace model. Over fire air was supplied via a header which was
attached to the high pressure Lamson blower. Each of these flows was

independently controlled and monitored, so that the proper air flow splits
could be obtained.

The heat transfer surfaces were constructed of perforated metal plate and

ABB Combustion Engineering Mary 1991
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paper tubing. These sections were shaped to simulate heat transfer surface
geometry. The free areas of the plates and their spacing within the model
were determined such that the axial and transverse pressure drop
coefficients were accurately simulated.

-

The fuel admission assemblies and the Close Coupled Over Fire Air
(CCOFA) were modeled as part of the windboxes. The free areas of the
compartments were adjusted according to the Thring-Newby criteria,
accounting for the change of density which occurs as a result of combustion
within the furnace. Perforated plate was added to achieve the proper
velocity splits between the primary air /coal nozzles and secondary air
nozzles. The firing circle in the model was set to model that of the prototype
through geometric scaling. A schematic of the modeled firing circle
/angles is shown in Figure 4-4.

The Seperated Over Fire Air (SOFA) injection nozzles were designed to
simulate the corresponding jet trajectories in the prototype. Each nozzle
was sized as a single jet, such that the mass and penetration ratios of the
prototype jet and the model jet were equivalent. These nozzles were also
constructed to allow for variable yaw and tilt settings within the model.
Figure 4-5 shows a closer view of these nozzles.

Methane, used as a tracer gas for the mixing studies, was introduced into
the over fire air at a point far upstream from the nozzle exits. This insured
that the tracer gas was fully mixed with the OFA before entering the
furnace. “

4.2 Automatic Probe Traversing Device

All quantitative three dimensional velocity and pressure mapping within
the flow model was performed with a calibrated five-hole pitot tube coupled
to a computer controlled traversing device and data acquisition system.
This system, developed and built at KDL, is called the Automatic Probe
Traversing Device or APTD.

ABB Combustion Englneering May 1991
Kraisinger Development Labaretery .
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The APTD is a programmable data acquisition system which automatically
positions and nulls the five-hole pitot tube, and records all pressure
readings on the laboratory's central computer system. Figure 4-6 shows
the five-hole pitot tube, the APTD, and the local programmable
controller/electronic manometer cabinet. The motion of the probe is
controlled by a local processor. This processor is programmed by the
facility operator at the start of each traverse by entering the appropriate
operational parameters for the particular test. These parameters include:
instrument type and serial number (for accessing the most recent
calibrations), test number, test plane, the number of data points, the
distance between each point, and the maximum distance of probe travel (a
safety feature.) Once these operational parameters have been entered, the
traverse is started by indicating the desired operational mode.

The processor controls stepping motors which move the probe to the pre-
programmed test point location and rotates it until the direction of flow is
obtained. The outputs of the four pressure transmitters attached to the
probe are then recorded along with probe position, angle, test number, test
plane, etc. by the central data acquisition computer,

4.3 Three Dimensional Pitot Tube Probe

A commercially available five-hole, directional sensing, pitot tube, shown
in Figure 4-7, was used to obtain the velocity data. The probe has five
pressure sensing holes located at its tip. The centrally located pressure
hole, P1, measures the total or impact pressure of the fluid, while two
lateral holes, P2 and P3, measure the static pressure. If the probe is rotated
around its long axis until P2=P3, the plane of flow can be identified and
measured. However, since the condition P2=P3 can be given at two
locations 180° apart, the correct vector plane is identified when P2=P3 and
P1 has its highest positive value with respect to P2 and P3. An angular
encoder is attached to the probe at its base so that the angle of this vector
plane, commonly called the yaw angle, can be measured. The yaw angle
indicates the plane of flow but does not give the flow angle within this plane.

ABB Combustion Engineeti May 191
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This flow angle, known as the pitch angle, is determined by the differential
pressure P4-P5.

In actual practice, four (4) differential pressure readings are required to
fully define the flow at a particular point in the flow field. These pressure
differentials are:

P1-Patm = Indicated total pressure with respect to atmosphere
P1-P2 = Indicated velocity pressure

P2.P3 = Yaw angle pressure

P4-P5 = Pitch angle pressure

Calibration curves are used to relate these pressure differentials to the
actual pressures and pitch angles. These curves are generated through
detailed probe calibrations, which were performed at the beginning of the
test series. These curves, given in Appendix A, enable the determination of
the actual velocity head and pitch angle at each measuring point. Knowing
this data and the yaw angle, the x, y, z, or the normal, radial, and
tangential velocity vectors are determined using simple geometric
relationships.

4.4 Laser Absorption Spectrophotometer

An automatic laser based system, the Laser Absorption Spectrophotometer,
has been developed in KDL to make tracer gas concentration
measurements using the available APTD hardware. A schematic of this
Laser Absorption Spectrophotometer is shown in Figure 4-8. The APTD
positions the five-hole pitot probe at each of a matrix of points in a plane, as
specified in the test set-up. A sample of the tracer gas is then extracted
from the flow model by a suction pump attached to the probe and analyzed
by the spectrophotometer.

The sample, in going from the probe to the pump exhaust, passes through a
chamber through which one of two equally intense laser beams is passed.
The wavelength of the laser light is tuned to the absorption frequency of the
tracer gas, methane. The level of attenuation, when compared to the
reference beam, is proportional to the concentration of the tracer gas at the
sampling point in the flow model. Before and after each traverse into the

ABB Combustion Enginsering May 1991
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model, the system is zeroed. Two samples per test point are drawn and the
results sent to the laboratory central data acquisition computer. A full
calibration is performed on this system prior to the model testing. This
calibration is given in Appendix B.

-

4.5 Smoke Generator

A commercially available smoke generator was utilized during the flow
visualization tests. The smoke generation system consisted of a gas heater,
a light oil smoke fluid reservoir, and tube coil. The fluid was pumped
through the tube coil, which was heated, causing it to flash into a dense
white stream of smoke. This stream was then injected into the various
ports of interest within the model.

ABB Combustion Enginesring May 15991
Kroisinger Development Laboratory
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50 Lansing Smith Flow Model Testing
5.1 Flow Model Set Up

The Lansing Smith flow model and the criteria used to design it have been
discussed in the previous sections. In general terms, the flow model is
representative of the actual prototype. The final step in achieving model
similitude is to configure the model inlet conditions such that they match,
as closely as possible, the inlet conditions which exist in the prototype.
Since the LNCFS-III configuration has not been installed in the prototype
unit, actual field data is not available. Therefore, the model flow splits were
modified such that they produced profiles similar to that of the design
operating conditions.

The overall distribution of the flow quantities between the sources of air was
handled in the following manner. The Lansing Smith flow model was
nominally operated under induced draft. The total air flow through the
model was measured using a venturi, which was installed in the main
duct downstream of the Model Area Fan. The OFA flow was supplied
through the Lamson blower and was measured independantly via an
orifice, which was located at the blower inlet. The OFA flow was than
subtracted from the total model air flow to obtain the flow through the
windboxes. Dampers in the air source lines allowed for adjustment of the
flow streams until the desired total flow ratios had been achieved.

Correctly modeling the initial flow distributions is necessary where the
evaluation of multiple gas streams is considered. For the Lansing Smith
model, it was necessary to model the windbox flows, including the CCOFA,
as closely as possible in order to obtain meaningful measures of the gas
mixing of the SOFA at higher levels in the furnace. Velocity ratios between
the primary and secondary air nozzles were determined based on MCR
operating conditions for the Lansing Smith Unit. In addition to this, the
CCOFA flow rates were determined from the design operating conditions.
The flow splits between the primary, secondary, and the Close Coupled
Over Fire Air nozzles were controlled through the use of perforated plate in

T S W
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the windboxes. The velocities through each of these nozzles were measured
with a pitot tube and the flow through each was determined. Perforated
plate was chosen such that the flow splits in the model matched those of the
prototype.

ABB Combustion Engineering May 1991
Krelsinger Development Laboratory
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5.2 Test Matrix

The isothermal flow model test program for the LNCFS-III configuration
was divided into two (2) separate screening levels (Figure 5-1) designed to
lead, in an interactive manner, to recommended OFA operation. In the
first level, flow visualization tests were performed on twenty (20) different
OFA configurations to evaluate those conditions which “lock the best” from
an OFA penetration, mixing, and dispersion standpoint. In the second
level, quantitative tests were performed on those configurations which were
chosen from the first level. These tests included methane gas mixing and
3-D velocity mapping. For each of these configurations, gas mixing data
was taken at planes 1, 2, 3, and 4 while 3-D velocity data was taken only at
plane 4. Each of these test planes were horizontal planes located above the
windboxes, above the SOFA nozzles, below the arch, and at the furnace
outlet plane, respectively. Figure 5-2 shows the location of these planes in
the flow model,

ABB Combustion Engineering 1891
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6.0 Results

The objective of this flow modeling effort was to evaluate the in-furnace flow
and mixing phenomena of the LNCFS-III configuration, which is to be
installed in the Lansing Smith No. 2 Unit following the LNCFS-II testing.
First, flow visualization tests were used as a preliminary screening tool to
evaluate a moderate number of operating conditions. Results from this
testing were than used to select those configurations which “looked the
best,” from an OFA penetration, dispersion, and mixing standpoint, for
additional quantitative tests. The quantitative tests, methane gas mixing
and three dimensional velocity mapping, were then used to select the OFA
configurations providing the desired level of mixing in the furnace.

6.1 Flow Visualization

Flow visualization tests were used as a qualitative method of observing and
evaluating the flow fields within the model. These tests were performed on
the baseline configuration (no OFA), as well as twenty (20) different
operating conditions of the LNCFS-III model configuration, consisting of
both CCOFA and SOFA. Each of these tests represented a combination of
furnace load and OFA firing angle. In addition to this, the effect of SOFA
tilt was evaluated for each test configuration.

Model flow patterns were visualized by the injection of smoke through each
of the windboxes, the CCOFA nozzles, and the SOFA nozzles. The smoke
was used to evaluate the furnace swirl, along with the OFA jet penetration,
mixing, and dispersion. This testing was performed at reduced model flow
rates, while maintaining the proper scaling parameters and flow splits.
These reduced flow rates were used to improve the visibility of the smoke
within the flow model. A video camera was used to record the flow
patterns, a copy of this tape is included as an Appendix. The information
gained from these tests was used to develop the matrix for quantitative gas
mixing and 3-D velocity tests. '

Flow visualization tests were performed on the baseline model
configuration to evaluate the flow fields within the furnace. The smoke was

ABB Combustion Enginesring May 1991
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injected through each of the four (4) windboxes to qualitatively evaluate the
flow swirl and fireball characteristics. The patterns of the smoke as it
entered through the different windbox compartments were also observed.
Results from this testing showed that the flow entering the furnace through
the lower windbox compartments experienced recirculation into the lower
hopper, as was expected. For the higher windbox compartments, the
windbox flow penetrated towards the center of the furnace and began to
form the “fireball”, located in the main firing zone. It could also be seen
that this swirl was more of an oval shape than it was circular, due to the
rectangular geometry of the furnace. Furthermore, it could be seen that
the overall penetration of the windbox jets was not very strong. Typically,
the flow would instead be redirected along the wall of the furnace before it
reached the center.

After the baseline test was performed, smoke visualization tests were
performed on twenty (20) OFA configurations. In addition to the different
configurations tested to simulate design operation, tests were performed for
0% CCOFA, 0% SOFA, a reduced SOFA flow of 12%, and an increased
SOFA flow of 24%. Each of these tests were intended to look at the
performance of the CCOFA and the SOFA as a function of the SOFA firing
angle and flow rate. A summary of these test configurations is given in
Table 6-1. Instead of describing the results of each of these tests
individually, the discussion will focus on the OFA performance for each of
the OFA flows tested. For each of these, the performance will be evaluated
as a function of the OFA nozzle firing angle and the tilt.

The first configuration tested was with 15% CCOFA and 0% SOFA. For this
configuration, smoke was injected through each of the CCOFA nozzles and
the flow patterns observed. From these tests, it could be seen that the jets
penetrated towards the center of the furnace, similar to the windbox flow.
As with the windbox, the overall penetration of the jets was not very strong,
with the flow being redirected along the wall of the furnace. This flow
behavior was typical for the CCOFA jets with the SOFA, also. Figure 6-1
shows typical flow visualization results for the CCOFA nozzles.

ABB Combustion Engineering May 1091
Krelsinger Devalopment Laboratory
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Next, the flow characteristics of the SOFA was observed, with and without
CCOFA, for a 0° firing angle.. In general, the performance for the 20%
SOFA condition was as follows. The jets began to penetrate towards the
center of the furnace, but became quickly entrained in the cross flow, as
was expected. As this happened, the jets were redirected towards the walls
and were dispersed along the outer perimeter of the furnace flow. Typical
results of flow visualization tests are shown in Figures 6-2 through 6-4.
When a downward tilt was imparted to these nozzles, the penetration
increased, while the overall dispersion also improved. However, when this
down tilt reached approximately 7°, the jets begin to mix with the windbox
firing zone. In so doing, the separation zone required for staged burning is
eliminated. Furthermore, as an upward tilt was imparted to these nozzles,
no improvements were noticed in the jet penetration and mixing.

In general, the penetration and mixing of the OFA jets was improved with
the adjustment of the nozzle firing angles, Figure 6-5. In the model, each
corner was adjusted to optimize the furnace coverage. That is, a series of
tests were performed in which the nozzle firing angles were adjusted to
improve the penetration and mixing of individual corners. It was through
this technique that those configurations tested in the next screening level
were chosen, see Table 6-2.

For the reduced operation of 12% SOFA, the overall performance was much
lower than 20% SOFA as far as jet penetration, mixing, and dispersion.
This is expected because of the reduced jet velocities and penetration. In
order to improve the overall mixing for this configuration, it was not only
necessary to adjust the firing angles of each nozzle, but it was also
necessary to impose a downtilt in the SOFA nozzles of 10°. In so doing, the
SOFA remained in the furnace for a longer period of time. However, the
downtilt in these nozzles reduced the separation zone between the
windboxes and the SOFA.

Finally, for the increased operation of 24% SOFA, the overall performance
tends to improve from a penetration and mixing standpoint, as would be
expected. The jets are able to penetrate deeper into the furnace cross flow

ABB Combustion Enginesring May 1991
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due to the higher velocities. An increase in mixing can also be seen at this
setting. However, as more combustion air is injected at higher furnace
elevations, the combustion process within the furnace will be effected. In
addition to this, the higher jet velocities restricted the allowable tilt in these
nozzles. Downtilt was limited to about 5° before the jets became entrained
in the windbox firing zone. Also, when a positive tilt was imparted to the
nozzles, the jets were carried to the back pass much more rapidly.

ABS Combustion Enginaeri May 1991
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Test No. Load 9% CCOF % SOFA Corner 1 | Corner 2 | Corner 3 | Corner
1 MCR 0% 0% N/A N/A N/A N/A
2 MCR 15% 0% N/A N/A N/A N/A
3 MCR 0% 20% 0° Qe 0° 0°
4 MCR 15% 20% 0° Q° Q° 0°
5 MCR 15% 20% 0° -5° 0° 0°
6 MCR 15% 20% 0° 0° -8° 8
7 MCR 15% 20% Q° .8° -5° -5°
8 MCR 15% 20% -8° -8° -8° -8°
9 MCR 15% 20% +5° -8° -8° -8°

10 MCR 15% 20% +7° -8° -5° -10°
11 MCR 15% 20% 0° -8° -8° -20
12 MCR 15% 20% 0° -8° -3° -8°
13 MCR 5% | 20% .30 -8° -5° -3°
14 MCR 15% 20% +2° -5° -7° -2°
15 MCR 15% 20% 0° 0° 0° 0°

16 MCR 15% 12% 0° 0° 0° Q°

17 MCR 15% 12% -3° -8° -5° -3°
18 MCR 15% 12% +2° -5° -7° 20
19 MCR 15% 24% Q° Q° 0P 0°

20 MCR 15% 24% -3° -8° -5° -3°
21 MCR 15% 24% 0° -8° -8° e

Front
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6.2 Methane Gas Mixing

Based on the results from the flow visualization, a test matrix for the second
screening level was developed, as given in Table 6-2. This second sereening
level involved quantitative mixing tests of five (5§) OFA configurations utilizing
methane as a tracer gas. The purpose of these tests was to quantitatively
measure the penetration, dispersion, and mixing of the OFA with the furnace
gases in order to select optimum OFA configurations.

Methane samples were extracted from the flow model through the five hole
probe, attached to the APTD. Samples were analyzed by the laser spectro-
photometer, previously discussed, and stored in the lab’s data acquisition
system. This data was later transformed to gas concentrations (ppm) within
the model. The measured gas concentrations were normalized to a reference
value, taken as the “well mixed” value at the model’s outlet. This data was
reported in both tabular forin, typical of Table 6-3, and graphical form.

For each of these tests, the flow model was operated at a simulated 100% MCR
with 15% CCOFA and 20% SOFA, The flow model was operated under induced
draft, with the SOFA under forced draft, the flow being provided by the high
pressure Lamson blower. In order to assure a “well-mixed” tracer gas
concentration at each of the SOFA nozzle outlets, the methane was injected
into the discharge of this blower at a point far enough upstream to permit
adequate mixing. The flow of methane was set using precision rotometers
such that a “well-mixed” value of approximately 1200 ppm at the model outlet
was achieved. A schematic of the methane injection system is shown in
Figure 6-6. The concentration of the methane gas was than mapped over the
four (4) test planes detailed previously in Figure 5-2. The concentration data
obtained at each plane was normalized to the “well-mixed” concentration
obtained at the model outlet, with each plot generated using the same scaling
factors so that they could be compared. For the purpose of clarity, all the plots
are presented at the end of this section. The degree of uniformity in
concentration across the plane was statistically quantified as the RMS
deviation of the mass weighted distribution of methane measured at the test
plane. The lower the coefficient, the better the mixing is across the test plane.

ABB Combustion Engineering 1991
Kreisinger Development Laboratory W
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Comparing the data at plane 1, contour and isoconcentration plots are
presented in Figures 6-7 through 6-16. In addition to these plots, the
normalized methane concentrations are shown in Figures 6-17 through 6-21.
Plane 1 is located just under the SOFA nozzles and is used to show the
separation zone between the windbox firing zone and the SOFA injection.
Generally, it can be seen that there is little SOFA recirculation in this zone, |
with a clear separation between the windboxes and the SOFA nozzles.
However, there are some areas of recirculation which should be noted. The
first exists for configurations 2 through 5 and is located at the right, rear
corner of the furnace. Although the cause of this is not known, it should be
noted that for each of these configurations, the SOFA nozzle at this corner is
set against the swirl of the furnace. Also, there is some recirculation along
the front wall for configuration #1, which was set at the same firing angles as
the windbozxes.

Data at plane 2, contour and isoconcentration plots, along with the normalized
methane concentrations, are presented in Figures 6-22 through 6-36. From
this data, the penetration of the SOFA jets can be seen as peaks in the
isoconcentration plots. Generally, these jets penetrate into the cross flow and,
as they mix with the furnace gases, disperse along the furnace walls.
Furthermore, the peaks in these jets are a function of the firing angles of the
SOFA nozzles. This corresponds with the results from the flow visualization
tests. Also, it can be seen that those jets which run along the front and rear
walls of the furnace tend to have longer penetration lengths than those which
run along the sides. Finally, the degree of “mixedness” is limited for this test
plane because of the close proximity to the SOFA nozzles. Therefore, the RMS
deviation, shown in Figure 6-37, for each of these configurations is high.

Contour and isoconcentration plots, along with the normalized methane
concentration values, for plane 3 are presented in Figures 6-38 through 6-52.
This plane, located just under the arch, shows the progression of the methane
mixing within the furnace model. Generally, the overall mixing at this plane
is greatly improved, with most of the concentrations falling between $25% of
the well mixed value, as can be seen from each of the

ABB Combustion Engineering 1991
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contour plots. As expected, the RMS deviation for this plane, Figure 6-53, is
much lower than plane 2, due to the increased mixing time of the SOFA jets.
From these plots, it can also be seen that there is higher methane
concentrations located along the front and rear walls of the furnace model.
This is more than likely a result of the aspect ratio and the furnace
aerodynamics. With the front and rear walls of the furnace 1.54 times longer
than the side walls, the SOFA jets which penetrate along the side walls will
become entrained along the front and rear wails before those jets which come
in along the front and rear walls move along the side walls. That is, there is
more SOFA mass through the areas along the front and rear walls then there
is along the side walls.

Finally, the plane 4 contour and isoconcentration plots, along with the
normalized methane concentration values are presented in Figures 6-54
through 6-68. This plane, located at the nose of the arch, shows the
progression of the SOFA mixing as the flow is exiting the furnace. Typically,
an RMS deviation less than 20% at the furnace outlet plane is considered well
mixed for industrial systems. For each of the configurations tested, the RMS
deviation was less than 21%, with these values shown in Figure 6-69.

Overall, the best configuration tested from a gas mixing standpoint was
Configuration #5. It provided the best overall mixing of any horizontal SOFA
configuration tested, with an RMS deviation of 15.6% at the furnace outlet
plane. The overall mixing characteristics for each of the configurations tested,
from the SOFA nozzles through to the furnace outlet plane, is shown in
Figure 6-70.
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STEADY STATE LASER METHAME TRACER

TEST ID t LNCFS-111-4 FLANE NUMEER :
TEST NUMBER 0014 NUMBER OF RUMWS
TEST DATE v 2727791 NUMBER OF COLUMNS
# EXTINCTION CGEFFICIENT L]
1 2 3 4 ] & 7 8 @ 10 11

A R et e 48 R S n Y 2w e TS # A S T R TS TSP Tm W e P Y mw s e S A ma e Y MR NM 4 0 3 Ry AT EE R e S e ¥ Y TP A8 AN M R P R e =T R T T4 AR E g TR S A8 mE R e T4 48 WY 4N P ek wE v e o a

0.4697 0.3592 0,983 0.624 0.6641 0.720 0.738 0.733 0,733 0.708 0.734

L R L el Tl L T P

1 1175.08 1581.39 1826.61 1835.15 1790.05 1662.28 1481.44 1282.51 1109,54 1071.97 B&5. 45

2 1371.08 1487,52 1443.00 1422.19 13756,52 124%.45 1291.89 1281,50 1150,30 1060.89 BPO.“_

3 1353,48 1322.33  1321.97 1181.34 ?49.58 B44,57 720.78 8i6.88 200,90 200.45 934.2

4 1219.592 1242.92 1280.42 1173.35 7321.33 B829.40 646.52 453.01 719.4%9 333.02 926.49

3 1008.81 1466.50 1507.51 1318.53 11U8.,38 ?19,.92 848,480 848,04 848,51 966,50 858,35 .

[ P64.03 1427.86 14675.24 1560.24 1372,22 1292.26 1273.73 1341.92 1284.03 123B.87 962,36

z 952,45 1286.17 1616,93 1770.44 1765.21 1B42.24 1625.50 1479.62 1614.73 1515.25 ?91.93 .

NORHQLIZED BY WELL MIXED CONCENTRATION®*
VALUE @+ 11R1.58 rem RMS BEV ! 24.8 %

T M TP 4 T P St T P o e VR T o AR M M gt Tl S PF o T i 90 48 B Pl B Bk (i P ko o Al R Sk ok P R T s A Pk SR o B ek £ A R Tk MY B P T b B et o i T T e =

0.986d 1.32721 1.532% 1.554% 1.5022 1.3950 1.2433 1.0763 0.9312 0.B994 0.7243
1.1508 1.2484 1.2110 1,1935 1,1552 1.04654 1.0842 1.0755% 0.9455 0.8%03 0.7471
1.1340 1.10%94 1.1074 Q.9914 0.794% 0.7088 0.46049 0.68B33 0.7561 0.7557 0.7857
1.059¢9 1.0746 0.9847 0.7732 0.6942 0.5594 0.5480 0.5038 0.7008 Q.7775
0,B466 1,2307 1.2651 1,1046 00,9721 0.7720 0.7122 0.73B5 0.7289 0.B111 0,72085
0.80%0 1,3661 1.4059 1.30%4 1.151é 1.0845 1.04689 1.1362 1.0776 1.0297 0.8078
0.7993 1.0724 1.3570 1.48358 1.4814 1.54640 1.3643 1.40%9¢ 1. 3551 1.3714 0.8324

SO LR e
-
o
)
-l
F-3

Table 6-3 Methane Mixing Data - General Output
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Test Identification

Figure 6-53
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SCS Low NOx Development Program LNCFS4ll

6.3 Velocity Testing

In addition to the methane gas mixing tests, three dimensional velocity test
data was obtained for each of the five (5) OFA configurations, along with the
baseline configuration. This velocity mapping was performed at the furnace
outlet plane for each configuration to characterize the gas flow distribution
leaving the furnace,

The velocity data was taken using the five hole pitot probe and the APTD,
previously discussed. Pressure measurements were collected and stored in
the data acquisition system and central computer, coupled to the APTD. The
computer calculates the x, y, and z components of the flow, where the x
direction is positive as the flow moves along the rear to the front of the furnace,
the y direction is positive as the flow moves from left to right in the furnace,
and the z direction is positive when the flow is upward in the furnace. The
measured velocities were than reported in both tabular form, typical of Table
6-4, and graphical form.

From the three-dimensional velocity data, the normalized upward velocity data
was plotted as surface and contour plots, and is shown in Figures 6-71 through
6-82. Additionally, the normalized value of the axial (upward) velocity is
presented in Figures 6-83 through 6-88. Results from these tests show that the
upward flow leaving the furnace is higher along the left rear corner, typical of
tangentially fired units. This is primarily due to the effects of the swirl and the
arch on the gasses leaving the furnace. Furthermore, the higher flows occur
along the walls of the model with reduced upward flow through the center. In
general, the flow distribution at the furnace outlet plane was fairly well
distributed, with RMS deviations between 17% and 22%, as shown in Figure 6-
89. The RMS deviation for Configuration #5 was 19.6%.

The side to side velocity and mass distribution at the furnace outlet plane is
shown in Figure 6-90. From this figure, it can be seen that the side to side
distributions for each of the configurations were consistent. In each case, the
flow in the center was fairly uniform, with higher flows along the side walls.
This is expected due the tangential nature of the furnace flow field. Because

ABB Combustion Enginesring 1991
Kraisinger Development Laboratory W
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high flow imbalances at the furnace outlet plane may result in an uneven
temperature distribution at the superheater, the side to side velocity
distribution for OFA operation should not be significantly different than
baseline operation. For Configuration #5, the velocity profile lea‘fing the
furnace is better than the baseline configuration.

The tangential velocities for each of these configurations are presented in the
form of vector plots. Each vector plot was generated using the same scaling
factors, so that they could be compared, and are presented in Figures 6-91
through 6-96. From these plots, the counter-clockwise swirl of the furnace
gasses can be easily seen. The tangential component of the flow is directed
towards the rear of the unit along the right side, while being directed towards
the front of the unit along the left side. The center of the flow swirl is located
near the center of the test plane for each of the configurations, with higher
tangential and axial velocity components located along the walls of the unit.
Note that the swirling flow is more oval than circular, due to the rectangular
geometry of the furnace. The results from this data corresponds to the results
of the flow visualization tests. .

ABB Combustion Engineariny May 1991
Kreisinger Development Laboratory
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PROBE MUMBER : B1884-2
PRODE CAL DATE : 10/23/%0

TEST i ¢ LNCFS-111-V3 PLANE NUHBER : 4
TEST NUMBER : 0023 NUMBER OF ROWS : b]
TEST DATE ¢+ 3/ U9 NUMBER OF COLUMNS @ 11

AVERAGE MORMAL VELOCITY 22,74 F1/SEC

NORHAL VELQCITY RHS .91 4
¥ NORHALIZED ¥
¥ X-VELOCITY
1 2 3 § K] 6 7 8 4 10 1

=009  -0,28 0,24 013 0,09 006 <0014 0,01 0.0 .18 0.38
-0.45  -051 042 -0.M -0.23 0.02 0.7 013 0.20 0. 46 1,04
-0.66 0.4  -0.36 -0.42 0.7 0.16  -0.16 0.3 0.40 0.55 2,95
081 -0.20  -0.07 0.07 0,43 0.24 0.38 0.54 0.47 0.74 0.87
-0.35 0.08 0.23 0.28 0.38 0. 0.32 0,37 0.52 0.49 0.36 -

St o Cnd B =

¢ NORMALIZED #

* Y-VELOCITY &

- - - —— - - - 4 bty el A 0 A R T T Y Y W P 7 P o o sk g e

-0.98 0,31 (.48 0.86 0.87 0.94 0.%2 (.88 0.87 0.57 0.42
-0.31 0.1 0.3t 0.37 0.4t 0.7 0,44 0. 14 0.47 0.0 -0.10
-0.08 -0.22 049 052 062 028 0.3 -1 0.3 <044 -0.14
-0,29  -~0.5% -0.32  -0.7%  -0.47 0.3 -0.0B -0.91 <074 -0.53  -0.25
-0.33 -0.86 -0.97 -1.00 0.9 0.3 -0.98 -0.98 -L1 Q4% -0.0

LN e el B e

¥ NORMALIZED *

* RORHAL VELOCITY

1 2 3 § 3 6 7 8 ) 10 11
1 .31 0.463 9.80 0.86 0.%0 0.94 1.02 1.08 0.90 0.99 1.00
2 0.99 0.84 0.79 0.87 0.71 0.92 1.10 1,20 1.14 1.27 1.7
3 1.08 0.80 0.78 0.73 0.72 .71 0,93 0.79 0.91 1,04 {28
§ 1,03 ¢.92 0.83 0.%4 0.79 0.65 0.70 0.84 0.93 1,18 .33
3 1.18 1,00 .22 .18 1.09 .16 1,06 1,14 .27 1.43 ;

Table 6-4 Velocity Mapping Data - General Output
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AUTOMATIC PROBE TRAVERSIMG DEVICE

PROBE NUMBER

t B18R4-2
PROBE CAL DATE + 10/23/90

TEST ID ¢ LNCFS-111-V3 PLANE NUMBER 4
TEST NUMBER : 0023 KUMBER OF RONS ° g
TEST DATE ¢ 3/ 1/91 NUMBER OF COLLMNS ¢ 11
AVERAGE MORMAL VELOCITY = 22,74 FT/SEL
& X-VELOCITY (FT/SEC) .
{ 2 3 4 5 § ? 8 9 10 1
1 <204 5.9 -5.51 -3.4% -1.18 -1.38 -39 -0.30 0.5 L7 B.53
9 <018 -11.5% -%.56 -5.35 -5.21  0.40  1.61  3.02 446 10,56  23.48
T -14.98  -10.06 -8.20  -0.46  -623 360 -3.68  7.26 13.65 12.46 2.4t
4 ~13.91  -4,84 204 168 9.7t S.4b 0 6.58 1233 10,59 16,87 19.B1
s  -7.86  1.82 5.7 429 .82 &6 LI BT LB 15.62 12,87
¥ Y-VELOCITY (FT/SEC) *
1 2 3 § 5 4 7 8 9 10 1
1 -L.BL 1149 1546 15.45  15.48 L3270 20.93 1995 2033 1% 9.55
200 k6 743 B 1385 16,08 1493 3D 10,67 027 <225
I -2 491 1119 -10.77 -14.18  -6.30  -8.00 -2.53 -14.34 -10.05 -3.16
§ 0 -8.58  -13.4 723 -18.08 15,07 12,62 -L.79 <2076 -16.88 -12.15  -5.49
S -7,53 -19.46 7017 -23.05 -01.88 21,02 -22.48 -22.0t 25,34 -11.06 -12.85
¥ NORMAL VELOCITY (FT/SEC) »
{ 2 3 4 5 3 7 B 9 10 1
{2982 14,25 1824 1958 20.40 20,32 23,30 24.53 20,51 244 271
2 .mS5 1899 7.9 19.83  14.06 20,81 2493 127,37 1582  28.85  28.93
I 24,53 1814 17,74 16.66 16,32 16,23 2.0 (8.7 20,78 2343 9.20
§ 2342 20,92 1939 240 18,03 1686 16,00  1B.99 21,05 25,48 I4T4
5 2,89 248 270 26,80 26,76 26,31 24,08 2590 28.81 3246 37.24
¥ TOTAL PRESSURE (IN-H20) #
1 2 3 § 5 6 7 9 10 1
1 -0.56 0.6 -0,62  -0.64  -0.67 0.6l -0.42 -0.81 -0.65 -0.58 -0.59
7 =005 -0.63  -0.88  -0.69 -0,69  -0.49  -0.68  -0.84  -0.68  -8.61  -0.53
30,03 -0.42 <061 -0.45  -0.47  -0.73 D47 <075 047 040  -0.53
§ 0 -0.03  ~0.60 <066 <065 <070 -0.74 =071 -0.66  -0.62 -0.57 0,50
5 <006 <057 -0.53 -0.57 0,62 0.5 -0.&2 -0.62 -0.59 -0.58  -0.47

Table 6-4 Velocity Mapping Data - General Output (con't)
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AUTOMATIC PROBE TRAVERSING DEVICE

PROBE NUMBER  : Bi884-2
PROBE CAL DATE @ 10/23/9¢

TEST 1D ¢ LNCFS-111-13 PLANE HUMBER : §
TEST HUMBER : 0023 NUMBER OF ROMWS : 3
TEST DATE I/ I/%1 NUMBER OF COLUMNS @ 11

AVERAGE NORMAL VELOCITY = 22,74 FT/SEL

¥ RESULTANT VELOCITY VECTOR/AMGLE IN THE X-Y PLANE %

- ittt o e

L 2 3 4 b 6 7
1 2.80/230, 12.94/133. 156, 417340. 19.76/350. 15, 28/3%, . L3736 2L.17/351.
2 12.36/233. 12.49/292. 11.92/307. 10.03/328. 14,80/339. 16,09/ 1, 15,0 &,
3 15,037263, 1.19/244, . 13.87/216. 15.11721%, 15, 49/204, 7.27/150, B.80/203,
§ 195.38/243. 14,22/1%9, 7.54/196. 18.14/173. 18,01/147, 13.73/197,. 8.76/102,
3 10.89/226. 19.54/175. 2.79/187, 23.89/163, 23.51159, 20.73/148. 33.371162,
8 7 10 i1
1 19.95/359. 2.3 L. 13,48/ L4, 12.81/ 42,
2 4. 34/ &4, 11.57/ 23. 10.36/ 89, 3,79/ 96,
3 7.49/10%, i9.80/137. 16,01/129. 21.84/ 99,
4 24, 15/149, 19.93/148. 20,79/126. 20.62/106.
3 3.81/159, 27.96/153. 19.14/125. 18.16/1335.

Table 6-4 Velocity Mapping Data - General Output (con't)
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Appendix A
Five Hole Pitot Probe Calibration Curves
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Appendix B
Laser Absorption Spectrophotometer Calibration Curve
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